

 THE GUIDE
 OR HOW TO NOT GET YOUR SELF BANNED

MADE BY THE USERS OF DATA REALMS FAN FORUMS FOR NEW MODDERS

CONTRIBUTORS

 Daman (cortex wiki)
ProjectThor(cortex wiki)
Grif (Lua tutorials and cortex wiki)
Vagyr(maker of this document)
Lord Tim (tutorials and cortex wiki)
Roon3 (walkpath tutorials)

 Table of context
1)Introduction on cortex command

 1.1)what is cortex command

 1.2)Cortex Command history

 1.3)Cortex Command factions

 1.4)Controls and tips

2) useful links

3) what does data realms forum has and how to use it

 3.1)categories of the forum

 3.2)forum rules

5) getting started with mods

6) modding

 6.1)what you will need to mod

 6.2)introduction in .ini and vocabulary

 6.3)variables

 6.4)offsets

 6.5)templates of a gun with comments

7)spriting

 7.1)basic introduction on sprites

 7.2)cortex command palette

 7.3)giving your sprites correct shading

 7.4)sprite figures introduction and how to make one

8)advanced modding

 8.1)actors templates

 8.2)how to make correct walkpaths

9) Lua modding

Chapter 1

 Introduction on cortex command
1.1) what is cortex command
Cortex Command is the primary project of Data Realms LLC.
The game is still in development.
"In Cortex Command, you play as a prospector and explorer in a
time where complete cybernetics and whole-body amputations
are common practice. Your severed brain is able to control many
different types of bodies remotely from its underground bunker:
clones, robots, spaceships, defensive turrets, and so on.
A typical scenario starts with a building phase where you get to
construct your own bunker complex from scratch. Then you
need to mine precious gold from the deformable pixel terrain in
order to buy more and better ships, soldiers, weapons, digging
tools, and deployable defenses. Use these assets to defend your
disembodied brain and destroy or bankrupt your opponent!

Control your team of remote bodies either directly or let the
friendly AI do your bidding through real-time strategy elements
built into the game. Play with up to four players in split screen --
2 vs. 2 players, or all four cooperatively against the computer.
Eventually, you can play the campaign missions together with
friends..."
The game currently features two modes of play: Campaign, and
Skirmish.
Skirmish mode supports up to 4 players, on 2 different teams, or
1 player against a single enemy. In a match versus the AI, the
game is an endless survival mode. In multiplayer skirmish, the
goal of the game is to destroy the opponent's brain.
Campaign mode, in the current version of the game, features a
single-player tutorial mission. Later builds will have a much
more complete story mode, with co-op gameplay, a planet-wide
metagame, and multiple factions.
There are three customizable types of control: Keyboard, Mouse
and Keyboard, and Gamepad.
In the future there are plans for a turn based meta game going on
in the planetary view while the player builds individual mining
bases to generate more income.
The campaign will be nonlinear. Your choice of faction will
control tech unlockables, and there will be specific storyline
missions.
But the real fun is the modding of this game.
You can easily add your own context or download other mods
through the data realms foroum but more on than later.

1.2)Cortex Command history

Cortex Command development started sometime within 2000, by Daniel
Tabar (a.k.a. Data), and a working alpha was released in 2004. Since
then Cortex Command has gone through numerous changes and
updates.As the game carried on he realized that he wasn't exactly the best
artist and sought the help of Promster (a.k.a. Prometheus). Promster's
graphical changes were implemented on the 27th of July, 2004 and gave
Cortex Command the graphical style that it is now known for.In 2004,
Data brought Prometheus onto the team, for art and creative help. In
2008, he contracted several members of the community to do work for
the game. These contributors includes capnbubs, TheLastBanana,
and numgunThe project has been in development for seven years. It has
been submitted to the Independent Games Festival four times the forth
time it won two awards one for technical excellence and the other was
the audience award, has a feature on the Great Games Experiment, and
was recently featured in Play magazine.Also links to the older versions
of cortex command can be found thanks to Grif.
Click on a link to begin download
Build 1
Build 2
Build 3
Build 4
Build 5
Build 6
Build 7
Build 8
Build 10
Build 11
Build 12
Build 13
Build 14
Build 15
Build 16
Build 17
Build 18
Build 19
Build 20
Build 21
Build 22

http://www.itchstudios.com/psg/�
http://www.itchstudios.com/psg/�
http://en.wikipedia.org/wiki/Independent_Games_Festival�
http://www.greatgamesexperiment.com/game/cortexcommand/?utm_source=gge&utm_medium=badge_user�
http://www.playmagazine.com/�
http://www.datarealms.com/downloads/cctest01.zip�
http://www.datarealms.com/downloads/cctest02.zip�
http://www.datarealms.com/downloads/cctest03.zip�
http://www.datarealms.com/downloads/cctest04.zip�
http://www.datarealms.com/downloads/cctest05.zip�
http://www.datarealms.com/downloads/cctest06.zip�
http://www.datarealms.com/downloads/cctest07.zip�
http://www.datarealms.com/downloads/cctest.zip�
http://www.datarealms.com/downloads/ccsetup10.exe�
http://www.datarealms.com/downloads/ccsetup11.exe�
http://www.datarealms.com/downloads/ccsetup12.exe�
http://www.datarealms.com/downloads/ccsetup13.exe�
http://www.datarealms.com/downloads/ccsetup14.exe�
http://www.datarealms.com/downloads/ccsetup15.exe�
http://www.datarealms.com/downloads/ccsetup16.exe�
http://www.datarealms.com/downloads/ccsetup17.exe�
http://www.datarealms.com/downloads/ccsetup18.exe�
http://www.datarealms.com/downloads/ccsetup19.exe�
http://www.datarealms.com/downloads/ccsetup20.exe�
http://www.datarealms.com/downloads/ccsetup21.exe�
http://www.datarealms.com/downloads/ccsetup22.exe�

1.3)Cortex Command factions

Wildlife
The critters that inhabit the gold rich planet you're on. Unfortunately for
them, your fighting and mining is killing them and their laying waste to
their planet.

Crab

The most common native on the planet.

Mega Crab

A crab that defends the nest and protects it's smaller brethren from harm.

Jumper

A tiny little thing that just jumps around.

http://www.datarealms.com/wiki/index.php/Image:Crabw.png�
http://www.datarealms.com/wiki/index.php/Image:Megacrab.png�
http://www.datarealms.com/wiki/index.php/Image:Jumper.png�

Brown Coats
A recently added race, made by Capnbubs. Although little data has been
given about this new faction, it has been gathered that they are a
heavyset faction, slow to move, but with impregnable armor. No
weapons have been specifically introduced for them.

Browncoat Light

A fearsome super soldier!

Browncoat Heavy

A unit that when seen on the battlefield it instills fear in to all that see

it,until they shot his helmet off because he has no head as too make it last
longer in the field of battle!

http://www.datarealms.com/wiki/index.php/Image:Browncoatlight.png�
http://www.datarealms.com/wiki/index.php/Image:Browncoat_Heavy.png�

White Bots
The Whitebots represent a somewhat elite faction. The current dropship
and rocket belong to the Whitebot faction. They also have the
brainmech. Although not shown in any game demonstrations to this
point, they have been spotted in the opening cinematic in a conflict
against the Coalition.

Aliens
Aliens, sure, you really can't tell what the brain is can you? You might
be a Zxolophlox controlling those human bodies, because human bodies
makes nice organic meat puppets. The opening cinematic briefly shows
various alien lifeforms that may be integrated into the game.

Trade star
A giant space station currently orbiting the gold rich planet than the
factions of cortex command fight for.
Trade Star is the company that transports their inventory from their
shipping station. You are responsible for the safe return of their
transportation vehicles. Any damage incured to their equipment will be
taken out of your gold return.not many more are known about this
faction and it is not known if they will play a more active role later on
the game.

 Available units

Brain Case

A small case that holds the brain of the player. The brain is the most
valuable objective in the game as is what controls all the operations of
your army.

http://www.datarealms.com/wiki/index.php/Image:Braincase1.png�

Robot 1

Trade Star's standard robot soldier. Suffers from impact damage more
than other units.

Robot 2

Trade Star's robot soldier redesigned to absorb more bullets,it still suffers
from impact damage same as the standard robot but it has been reduced
by the rebuild.

Brain Robot

Trade Star's standard robot fited with a brain enclosure for prospecting
brains to go set up mining bases or make a quick escape if under seige.

Rocket Mk1

http://www.datarealms.com/wiki/index.php/Image:Tradestarrobot1.png�
http://www.datarealms.com/wiki/index.php/Image:Tradestarrobot2.png�
http://www.datarealms.com/wiki/index.php/Image:Brainrobot.png�
http://www.datarealms.com/wiki/index.php/Image:RocketMk1-1x.png�

The cheapest Trade Star Rocket, but also the riskiest since the Rocket is
larger than a dummy's, has trouble landing, and it's full is kept under
high pressure if shot it becomes extremely hard to control. It is however
very useful as an offensive weapon, a common strategy is to take control
of the rocket and fly it at full speed into a group of enemies, much like a
cruise missile.

Rocket Mk2

Trade Star's Rocket Mk2 is a much improved design of the Mk1 for
maximum safety, but it is even more tall than the Mk1 making it a even
bigger target but it's high speed and maneuverability over compensate for
this weakness. The higher speed, larger size, and much higher
maneuverability of this craft make it a even better guided missile than
the Mk1. the offset is the much higher price.

Drop Ship Mk1

The more expensive and complex craft, this craft keeps its balance, and
is easier and safer than a rocket. Assuming no one decides to blast off an
engine, causing the craft to fall and spin out of control, crash, and
explode, sending its doors nearly into orbit

http://www.datarealms.com/wiki/index.php/Image:Trade_Star_Rocket_MK2.png�
http://www.datarealms.com/wiki/index.php/Image:DropShipMk1-1x.png�

Avalable Tools & Weapons

light digger

The Light Digger is, as its name suggests, the lightest of the Diggers. It
somewhat resembles a handgun or pistol with a slightly extended barrel.
It can dig through dirt, inner walls and flesh at an average rate, say like a

dustbuster. You can hold the Light Digger and your Jet power is
relatively unaffected. Some enemies spawn with the light digger.

http://www.datarealms.com/wiki/index.php/Image:Lightdigger.png�

medium digger

The Medium Digger is the average tool. It can dig through most
materials, yet is not too heavy. It looks more like a submachine gun than
a digger, but don't be fooled, the Medium Digger can pack a punch in its
short range. Some enemies spawn with the Medium Digger.

Heavy digger

The Heavy Digger is the biggest of the Diggers. It can dig through

anything you throw at it, including enemies flung at high speeds and the
Impenetrable Bunker wall. Although it is heavy, it is worth every ounce.

Some enemies spawn with the Heavy Digger, but rarely. The Heavy
Digger is so powerful that if you're digging above you, you won't be able
to use your jetpack! By firing down while falling, the Heavy Digger will

act as a parachute.

http://www.datarealms.com/wiki/index.php/Image:Heavydigger.png�

Concrete sprayer

he concrete sprayer is the opposite of the digger. It sprays out concrete a

short distance, and can be used to fill in holes and gaps in a bunker as
well as to build small walls to use as cover. Enemies do not spawn with
the Concrete Sprayer. It is possible to kill enemy or yourself by spraying

concrete on the target, but the chance is relatively low. The Concrete
Sprayer is excellent when your base has been compromised, and you

have to seal the holes, or risk your brain being eliminated.

pusher

As the name suggests the pusher can well push actors and other things

like a grenade away from you.Not a realy useful weapon it can be hard to
use and difficult to find a real useful situation in order to use it.

Blaster

The blaster is a small light pistol with decent stoping power and a small

clip.Buy it when you are low on gold

Laser Rifle

The laser rifle can quicly cut through orgranic matter making it ideal
against unarmored targets.The drawbacks are a small clip and the fact

than it can be less useful against unarmored targets.

http://www.datarealms.com/wiki/index.php/Image:Concretesprayer.png�
http://www.datarealms.com/wiki/index.php/Image:Pusher.png�
http://www.datarealms.com/wiki/index.php/Image:Blaster.png�

Riot shield

The only available shield in the vanilla game.Use it with a shingle

handed weapon but keep in mind than it can brake leaving you open in
the enemy gunfire.

http://www.datarealms.com/wiki/index.php/Image:Riotb.png�

Coalition

These are standard, cloned troops. They represent typical military
factions, and are usually clad in green. They are strong versus most gun
fights, but are slow. They come pre-equipped with helmets, which can
stand a single headshot before death. Their weapons come in a variety of
types.

Units

Coalition Light Soldier

A Coalition trooper that's fast on its feet but is lightly armored.

Coalition Heavy Soldier

A Coalition trooper with heavier built armor that protects and slows
down this unit.

Coalition Battle Drone

A drone that generates a strong phase field around it for a surprisingly
effective radial attack that can rip apart nearby units.

http://www.datarealms.com/wiki/index.php/Image:Coalitionsoldierlight.png�
http://www.datarealms.com/wiki/index.php/Image:Coalitionsoldierheavy.png�
http://www.datarealms.com/wiki/index.php/Image:Coalitiondrone.png�

Coalition Medic Drone

This Drone has no offensive abilities BUT it heals units that are close to
it.

Coalition Brain Robot

A heavily armored robot that contains the brain in a cavity in it's chest.

WEAPONS AND DEVISES

Coalition concrete sprayer

With this tool, you can create small bridges and walls, fill gaps and

create small barricades.A little better than the trade star’s

http://www.datarealms.com/wiki/index.php/Image:Coalitionmedicdrone.png�
http://www.datarealms.com/wiki/index.php/Image:Coalitionheavybrainrobo.png�

Pulse digger

Coalition's pulse digger. Digs in wide pulses unlike traditional

diggers.Faster than all the other but it cannot penetrate rock or cement.

pistol

Cheap and reliable, the standard sidearm of the Coalition. Quick reload

times and good accuracy make up for the lack of stopping power.It is
advised to always carry one in order not to find your self defendless.

Auto pistol

Semi-auto not good enough for you? Now with improved ammo

capacity over the standard model,it can prove realy usefull in difficult
situations.Suffers from low accuracy.

Auto shot pistol

Turn your enemies into swiss cheese with this little beauty, just watch

out for the long reload times and the bad accuracy.One of the best
choices for a side arm.

http://www.datarealms.com/wiki/index.php/Image:Pulse_Digger.png�
http://www.datarealms.com/wiki/index.php/Image:Pistolx.png�
http://www.datarealms.com/wiki/index.php/Image:Autopistol.png�
http://www.datarealms.com/wiki/index.php/Image:Autoshotpistol.png�

Compact assault rifle

Sacrifices stopping power and accuracy for a higher rate of fire.Overall

weak and a bad choice if you are going to fight a lot of enemies or a few
strong.Can be used as a last option side arm.

Assault rifle

Workhorse of the Coalition army,with a 30 rounds clip and good
accuracy you can always rely on this cheap rifle to get you out of

difficult situations.A weapon of choice if you want to create cannon
folder troopers.

Gatling gun

Coalition's feared heavy weapon that features a large magazine and

amazing firepower. Reloading is not an issue because there is enough
ammo to kill everyone even remotely close.Can be used for anti

dropships duty or for heavy support for your troopers.Just wach out the
long reload and the spin up before the fire.It’s heavy weight makes it a

weapon for defending duty.

http://www.datarealms.com/wiki/index.php/Image:Compactassaultrifle.png�
http://www.datarealms.com/wiki/index.php/Image:Assaultrifle.png�
http://www.datarealms.com/wiki/index.php/Image:Gatlinggun.png�

Sniper rifle

Coalition special issue, semi-automatic precision rifle. Complete with

scope for long distance shooting.Light weight and with a decent fire rate
it can be used for hit and run tactics or for defending a remote difficult

to reach area of the map.

Heavy sniper rifle

The sniper rifle's big brother. You only get 4 rounds to a clip, but why
settle for a headshot when you can blow the head clean off with a giant
.60 caliber bullet?This weapon is heavy and packs a strong punch.Use it
for defend purposes and don’t go on a rampage with it.Drawbacks are

its slow rate of fire and it’s heavy weight.

shotgun

Standard shotgun. Makes a brutal mess of infantry. 6 Shots, light
weight, moderate reload time and small size make it great for close

quaters.

Auto shotgun

Fully automatic shotgun. This thing is a blast, but with only a 6 round
clip be wary of the reload times!Good for assaults on enemies.

Mauler shotgun

Automatic super shotgun. It launches small spike balls combined with
traditional flechettes. This beast will literally rip apart anything in its

path.Use it to defend your base.And keep in mind than it is realy heavy.

http://www.datarealms.com/wiki/index.php/Image:Riflesniper.png�
http://www.datarealms.com/wiki/index.php/Image:Heavysniperrifle.png�
http://www.datarealms.com/wiki/index.php/Image:Shotgun.png�
http://www.datarealms.com/wiki/index.php/Image:Autoshotgun.png�
http://www.datarealms.com/wiki/index.php/Image:Maulershotgun.png�

flamer

Light flamethrower. Grill and scorch your opponents with this pretty
weapon. Extremely powerful for close quaters.Exelent weapon for
bunker cleaning and for close combat assaults against the enemy

bunker.

Napalm flamer

Napalm flamethrower. Cover and cook your foes with burning napalm
and fire. The compressed container allows you to spray napalm

continuously for several seconds! The only drawback is the short range
shared by all flamers.Good for area denial weapon or for tight corridors

bunker defence where the enemy cannot evade it.Drawback is the
heavy weight making it ineffective for assults

Spike launcher

Fires an explosive charge with a short fuse that rips infantry to shreads
and impales them hard with steel spikes. Only holds 2 rounds and takes

time to reload.Not a particulary effective weapon for open combat.

Flak cannon

Flak Cannon. A devastating anti-air weapon, it can take out a dropship
from a nice distance with easy and little aim. Not too great at close

quaters though.Drawback is the heavy weight.

http://www.datarealms.com/wiki/index.php/Image:Flamerv.png�
http://www.datarealms.com/wiki/index.php/Image:Napalmflamer.png�
http://www.datarealms.com/wiki/index.php/Image:Spikelauncher.png�
http://www.datarealms.com/wiki/index.php/Image:Flakcannon.png�

Auto cannon

Auto cannon for your heavy soldiers to use. Devastating power, high
rate and lots of rounds to fire. Reloading this thing might take some

time though.Use it against very heavy enemies, for light enemies prefer
something lighter.

Revolver cannon

Revolver Cannon. A brutal and powerful automatic cannon. Launches
heavy slugs at high velocities that smash the living hell out of their

targets, and even if they don't, explode after a short delay. You get 6
shots, but before you get to use them all every opponent will be dead

and thus the long reload time won't even bother you.Beware of it’s
heavy weight.

http://www.datarealms.com/wiki/index.php/Image:Autocannon.png�
http://www.datarealms.com/wiki/index.php/Image:Revolvercannnon.png�

Uber cannon

Uber Cannon. A shoulder mounted, tactical artillery weapon that is the
most powerful weapon in the Coalition infantry arsenal.Crumbersom

and heavy it is no a realy usefull weapon.

Rocket launcher

Rocket Launcher. Fires a rocket-propelled grenade. Be careful not to
fire at close range if you want to keep your eyebrows intact.Slow firing
rocket makes it difficult to actually hit a targer but if you succeed the

reward is a decimated enemy.

Homing missile launcher

After a half-second in the air, this missile locks onto a nearby enemy.
DO NOT fire at close range!Grate for anti rocket/dropship duties.

http://www.datarealms.com/wiki/index.php/Image:Ubercannon.png�
http://www.datarealms.com/wiki/index.php/Image:Rocketlauncher.png�
http://www.datarealms.com/wiki/index.php/Image:Homingmissilelauncher.png�

Dummies
Cheap and easy to build, these robots can be used for light attack roles.
The tutorial mission is your first introduction to these guys, you are
given the task of maneuvering your dummies in a small obstacle course
to get acquainted with the mechanics of controlling a body. Dummies are
well-rounded, and are also light, allowing them to move relatively
quickly, however they are easily defeated by stronger enemies and
should not be depended upon to hold a base.

UNITS

Dummy Controller

Once these were used by brains as back ups and to expand their control
over a area.

Dummy

A cheap, reliable unit but has a bad habit of having it's limbs removed.
Dummy Dreadnought

A four-legged mobile turret can take lot of gunfire, but it can't aim up at
high angles.

http://www.datarealms.com/wiki/index.php/Image:Dummycontroller1.png�
http://www.datarealms.com/wiki/index.php/Image:Dummy.png�
http://www.datarealms.com/wiki/index.php/Image:Dummydreadnought.png�

Dummy Small Turret

It may be small and unable to move, but it's generally mowing you down
by time you knock its armor off with a standard weapon.

Dummy Drop Ship

An orange drop ship used by the Dummy faction. It has much less of its
engines exposed, so it's less likely to lose one. Its doors can be destroyed
by gunfire. It's also a bit cheaper, and harder to control than a Drop Ship

Mk1.

Dummy Rocket

A small orange rocket low capacity for cargo. It's harder to control than a
full size rocket and easier to shoot down, but it's cheaper. It makes an
excellent projectile when crashed in to a target, especially when filled

with bombs.

http://www.datarealms.com/wiki/index.php/Image:Dummysmallturret.png�
http://www.datarealms.com/wiki/index.php/Image:DummyDropShip-1x.png�
http://www.datarealms.com/wiki/index.php/Image:Dummyrocklet.png�

Weapons And Tools

Turbo digger

Dummy mining tool. Works as a powerful close range weapon too.

shielder

Materializes a temporary energy shield in front of the user for

protection and/or slowing down enemy pursuers.

Rail pistol

A compact sidearm for a good price and decent performance!

nailgun

A powerful sidearm that fires heated nails at high velocities. Worth

every gold ounce you will pay.

Dummy blaster

Energy based sub machine gun. Has a much shorter range than ballistic
weapons, but its power and fast reloading make it an effective weapon.

http://www.datarealms.com/wiki/index.php/Image:Turbodigger.png�
http://www.datarealms.com/wiki/index.php/Image:Shielder.png�
http://www.datarealms.com/wiki/index.php/Image:Railpistol.png�
http://www.datarealms.com/wiki/index.php/Image:Nailgun.png�
http://www.datarealms.com/wiki/index.php/Image:Dummyblaster.png�

repeater

Effective rapid fire support weapon. Doubles as a good assault weapon
due to its large clip, but users should be warned of the long reload time.

Nailer cannon

Rapid fire version of the Nail Gun. Fire lots of heated nails at an

incredible rate!

Dummy sniper rifle

Long range rifle with a scope. It has large ammo capacity and a steady

rate of fire.

Dummy grenade launcher

Devastating grenade lobbing weapon. Use this weapon's slow firing

velocities to shoot over walls and hills.

Destroyer cannon

This cannon fires bolts of slowly advancing energy that mow down

multiple enemies in a row without slowing.

http://www.datarealms.com/wiki/index.php/Image:Repeater.png�
http://www.datarealms.com/wiki/index.php/Image:Nailercannon.png�
http://www.datarealms.com/wiki/index.php/Image:Dummysniperrifle.png�
http://www.datarealms.com/wiki/index.php/Image:Dummygrenadelauncher.png�
http://www.datarealms.com/wiki/index.php/Image:Destroyercannon.png�

annihilator

Destructive heavy laser cannon. Mow down your opponents with a fat,

satisfying laser beam!Heavy weight and a long reload makes this weapon
crumbersome and difficult to use properly.

Disruptor grenade

Area denial grenade. Sets a deadly field upon detonation that lasts for

10 seconds.

Impulse grenade

Standard dummy grenade. Explodes into a devastating kinetic blast that
will knock away or even tear apart its target.Good for taking out a lot of

enemies.

http://www.datarealms.com/wiki/index.php/Image:Annihiliator.png�
http://www.datarealms.com/wiki/index.php/Image:Disruptorgrenade.png�

Undead
First encountered in a "Zombie Cave" mission, these putrid smelling foes
stagger towards you in the shape of Zombies, which range from fat and
skinny ones, to bare skeletons. Essentially, a massing party. The
weapons this faction uses can be guaranteed unsafe, bad, and most
importantly of all of all cheap.

Skeleton

A reanimated skeleton for use as a cheap troop and cannon fodder.

Zombie Thin

A half baked clone that is just a little more fleshy than a skeleton.

Zombie Medium

This zombie is as close to the real deal as it will get...but thats not saying
much.

http://www.datarealms.com/wiki/index.php/Image:Skeleton.png�
http://www.datarealms.com/wiki/index.php/Image:Zombiethin.png�
http://www.datarealms.com/wiki/index.php/Image:Zombiemedium.png�

Zombie Fat

A zombie that was left in the tube a wee bit to long and is now
slower and fat, but that fat makes it a bit more durable for a zombie that

is.

Weapons

blunderpop

A single shot shot pistol...
Not much to say about it…

Blunder buss

another single shot gun but with more power.

Blue bomb

 A decent and cheap grenade.

http://www.datarealms.com/wiki/index.php/Image:Zombiefat.png�
http://www.datarealms.com/wiki/index.php/Image:Blunderbuss.png�
http://www.datarealms.com/wiki/index.php/Image:Bluebomb.png�

RONIN
A collection of "rebels". They use antique weapons, and recruit civilians,
prisoners, and the poor. Effectively, cannon fodder. Each type of soldier
has unique characteristics which help it slightly with combat and
effectiveness.

Dafred

Dafred is simply awesome.

Mia

Mia is flexible and runs like the wind.

Dimitri

Dimitri is tall and can see pretty far.

http://www.datarealms.com/wiki/index.php/Image:Roninsoldierdafred.png�
http://www.datarealms.com/wiki/index.php/Image:Roninsoldiermia.png�
http://www.datarealms.com/wiki/index.php/Image:Roninsoldierdimitri.png�

Brutus

Brutus is a tough guy, although heavy and slow

Sandra

Sandra's sexy hair can make any soldier hesitate.

Gordon

Gordon can soak up bullets, but don't crash into anything if you like

living.

Weapons and devises

Foam sprayer

shovel

http://www.datarealms.com/wiki/index.php/Image:Roninsoldierbrutus.png�
http://www.datarealms.com/wiki/index.php/Image:Roninsoldiersandra.png�
http://www.datarealms.com/wiki/index.php/Image:Roninsoldiergordon.png�
http://www.datarealms.com/wiki/index.php/Image:Foamsprayer.png�
http://www.datarealms.com/wiki/index.php/Image:Shovel.png�

Lady pistol

glock

Hak 20

luger

Desert Eagle

peacemaker

Uzi

http://www.datarealms.com/wiki/index.php/Image:Ladypistol.png�
http://www.datarealms.com/wiki/index.php/Image:Glockk.png�
http://www.datarealms.com/wiki/index.php/Image:Hak20.png�
http://www.datarealms.com/wiki/index.php/Image:Luger.png�
http://www.datarealms.com/wiki/index.php/Image:Deserteagle.png�
http://www.datarealms.com/wiki/index.php/Image:Peacemaker.png�
http://www.datarealms.com/wiki/index.php/Image:Uzic.png�

Tommy gun

Yak 47

Yak 4700

M 16

M 1600

Long rifle

Ronin sniper rifle

http://www.datarealms.com/wiki/index.php/Image:Tommygun.png�
http://www.datarealms.com/wiki/index.php/Image:Yak4700.png�
http://www.datarealms.com/wiki/index.php/Image:M16.png�
http://www.datarealms.com/wiki/index.php/Image:M1600.png�
http://www.datarealms.com/wiki/index.php/Image:Riflelong.png�
http://www.datarealms.com/wiki/index.php/Image:Roninsniperrifle.png�

Pumpgun

shotgun

Spaz 12

Spaz 1200

bazooka

RPG M17

a rocket propelled chainshaw...

honestly

http://www.datarealms.com/wiki/index.php/Image:Pumpgun.png�
http://www.datarealms.com/wiki/index.php/Image:Shortgun.png�
http://www.datarealms.com/wiki/index.php/Image:Spaz12.png�
http://www.datarealms.com/wiki/index.php/Image:Spaz1200.png�
http://www.datarealms.com/wiki/index.php/Image:Bazooka.png�

Pineapple grenade

Stick grenade

Molotov cocktail

stone

Distractor device

http://www.datarealms.com/wiki/index.php/Image:Pineapplegrenade.png�
http://www.datarealms.com/wiki/index.php/Image:Stickgrenade.png�
http://www.datarealms.com/wiki/index.php/Image:Molotovcocktail.png�
http://www.datarealms.com/wiki/index.php/Image:Stonewjs.png�
http://www.datarealms.com/wiki/index.php/Image:Distractordevice.png�

Chapter 2

 Useful links

1)devlog (http://www.datarealms.com/devlog/)
Where the developer Daniel Tabar (a.k.a DATA) will post the newest development of data

realms projects (cortex command).

2)cortexwiki(http://www.datarealms.com/wiki/index.php/Main_Page)
The official wiki for the cortex command containing tutorials and information for cortex
command.Updated from time to time it can provide answers for many questions you

might have.

3)FAQ(http://www.datarealms.com/forum/faq.php)
The FAQ for the datarealms forums containing a useful troubleshooting in case something goes

wrong with your account or if you have any questions about some aspect of the forum.
View it at lest once.

4)SEARCH(http://www.datarealms.com/forum/search.php)
The datarealms forums can be a bit big if you visit them for the first time as a user.

Instead of opening a new thread go in the search and type in what you want to find.
It is user friendly and able to give you results before you know it.

It is advised to use it before you open a new thread.

5)FORUM RULES(http://www.datarealms.com/forum/viewtopic.php?f=61&t=10345)
The data realms forum rules,read them carefully if you want to stay in the forums.

http://www.datarealms.com/devlog/�
http://www.datarealms.com/wiki/index.php/Main_Page�
http://www.datarealms.com/forum/faq.php�
http://www.datarealms.com/forum/search.php�
http://www.datarealms.com/forum/viewtopic.php?f=61&t=10345�

Chapter 3

What does data realms forums has?

Data realms forum is divided in 3 main categories
1)Cortex command

 2)mods and scenes
 3)Data Realms general

1)”Cortex command” category is divided in 4 sub-categories

A)”dev log” a link which takes you to the development log we analyzed
before.

B)”Wiki(link)” again a link which takes you to the cortex Wiki main page.

C)”General” contains discussions about cortex command and general
announcements, contains 1 sub-category named “Media” which holds
sprites, sounds, art and other media related to cortex command.

D)”Support” this is the sub-category which you can use to find help for
technical problems related to cortex command for example if you
cannot start the game or you have license problems.

2)”mods and scenes” category is divided in 3 sub-categories

A)”mod making” you can use this sub-category to post you unfinished
mod in order to get some feedback(what you should improve etc)
before you release it or if you have some problems/questions related
with modding.this sub-category is further divided in 2 more sub-
categories named “Lua scripting” which you can use to discuss Lua
related things or to find some help should your mod requires some
form of Lua and you had a problem coding it or you wanted to request a
Lua code.The other sub-category is named “Requests” where you can
request sprites sounds or codes for your mod.

B)”mod releases” is the sub-category where you can post you
completed mods and find other users mod.
This category is the part you will most likely visit the most due to the
fact than the whole fun you can get from cortex command comes from
mods and the innovation of their creators.

C)”scene releases” this sub-category holds the completed user
generated scenes you can use.It is divided in a sub-category named
“scene making” which you can use to find help and advises should you
be making a new scene.

3)”data realms general” this category is divided in 2 sub categories

A)”General discussion” talk about everything with the community there.
It is divided in 3 sub-categories which are easy to understand their use
so I will not analyze them.

B)”forum news/feedback/forum help” here you can ask questions and
make suggestions for the forums.divided in 2 self explaining sub-
categories.

Chapter 4

Getting started with mods
(this Chapter takes as granded than you know how to download a mod/scene).

Mods and scenes comes in files which have the extencion .rte.
The mods and the scenes you will download will be always in either .rar
or .zip format.

In order to open these files you will need winzip which can be found
and be downloaded from here (http://www.winzip.com/index.htm).

Once you have downloaded and installed the latest version of winzip or
an similar program to your computer you must double click the mod

you have downloaded (for example mod.rte) and extract it on the
directory you have installed cortex command.

(default for windows is C:\Program Files\data realms\cortex command)
Or you can first extract the .rar file in you desktop and drag and drop it

where you have installed cortex command.
And that is all about how to install a mod to your computer.

To deleted you simply delete the file of the mod.

http://www.winzip.com/index.htm�

Chapter 5

start modding

6.1)what you will need to mod
Modding in cortex command is pretty simple and requires

very few actual resources.
You will need a text reader to open the .ini files, a

calculator if you want to do waklpaths and offsets and
lastly a .bmp editing program like paint.

That is all you will ever need to use in order to start
modding.

6.2)introduction in .ini and vocabulary

Modules loaded in Cortex Command are simply directories in the Cortex
Command directory with an .rte extension. On loading, the game will
check for any modules in its home directory.
In order for the game to actually load your module, the folder must
contain a file called index.ini This is pretty self-explanatory. It is an
index for all files to be referenced in the module.

Within the index.ini file are a variety of properties and attributes--
examples of which are given below:

DataModule
 Author = Me
 ModuleName = My Mod
 IconFile = ContentFile
 FilePath = Example.rte/Icon.bmp

 IncludeFile = Example.rte/Content1.ini
 IncludeFile = Example.rte/Example/Content2.ini

 //Comments are not read.

 /*
 Block comments are also ignored.
 */

DataModule

 This will always be the first line. The only purpose of this line is to
inform the game's interpreter that the file being read is the index of a
module. If this line is not included, the interpreter will throw an
error: Could not find DataModule.

Author

 This is a place for the creator to show who created the file. It has no
bearing on the actual mod. It is an optional property.

ModuleName.

 This property gives your mod a unique identifying name. It must be
unique. Mods cannot share ModuleNames. This is a mandatory
property.

IconFile.

 This property gives your mod a uniqe banner, flag, or icon to identify
it in the buy menu. The property is optional, but the attribute must
be ContentFile if it is included.

FilePath

 If you opt to create an IconFile, your next declaration will be FilePath.
This is pretty straight forward. The FilePath is a parent of the
IconFile. In English, it says where the image file resides in the
module. The attribute of this property will always
be YourMod.rte/folder/file.extension You must always include the
name of the module (the .rte) that the file is contained in. This
property is optional, but must be included if the IconFile property is
declared.

IncludeFile

 Finally, the meat of an index. These properties tell the interpreter
where to locate other module files to include. Generally, mod contents
are not contained in the index, but are organized into other .ini files
for organizational purposes. If you opt to add module content to other
documents, you must call IncludeFile to tell the game where to look.
The attribute for this property is the file location within the module.
Again, this must follow
the YourMod.rte/folder/file.extension format.

The number of includes is essentially limitless. This allows you to
organize your files as you see fit and increases the interpreter's
flexibility. Many larger mods have separate includes for playable actors,
crafts, weapons, devices, and scenes. The complexity of your project is a
large factor in how you organize your includes.

If you have experience in object-oriented programming and scripting,
you already know at least half of what is required to create mods for this

game. For now, we will assume you do not have this experience. For
now, lets start with a vocabulary primer:

Vocabulary

You will see these words used quite frequently when you are creating
mods. They are integral to the object-oriented programming design

cycle. Learn them.

Classes

 A class is a conceptual structure that is used to define an item. If you
want a weapon, you use the HDFirearm class. Classes cannot be

changed or edited. Their structure is unmodifiable.
 Real-world example: A car is a class of transportation. Don't think

about it too hard, just take that as a fact.
 In-game example: An HDFirearm is a class of held device.

Objects

 An object is an instance of a class. Simply put, an object is a class that
you can edit and modify to your needs. It is created for you to make a

specific type of class.
 Continuing our real-world example: A Volkswagen Beetle, a Toyota

Camry, or a Ford Taurus would be objects of the car class. Does that
make sense? A Beetle, Camry, or Taurus are a "type" of car.

The type of car would be the object.
 In-game example: A Yak 47, Rail Pistol, and the Gatling Gun are

objects of the HDFirearm class.
Properties

 A property is another fancy, object-oriented word for variable. An
object has certain attributes, and a property defines what those

attributes are.
 Again, using the car analogy: A Volkswagen Beetle (the object) can

have several properties. They include (but are not limited
to): color, engine size, or transmission.

 In-game example: RateOfFire, FullAuto, and Mass are properties of
the YAK-47 object of the HDFirearm class.

Attributes

 Attributes are simply the values of properties. Mass = 16. Mass is the
property, 16 is the attribute. Fairly simple.

 Real-world example: Red (attribute) is the color (property) of the
Beetle (object) that is a car (class).

 In-game example: 4 (attribute) is the mass (property) of the Rail Pistol
(object) that is an HDFirearm (class).

Fundamentals

To begin, the Cortex Command interpreter has very strict rules. Proper
capitalization and tabbing are absolutely critical. Look at the two

examples below:

 Example one:

AddDevice = HDFirearm
PresetName = SMG

 Example two:

Adddevice = hdfirearm
Presetname = SMG

Example one is properly capitalized and tabbed. Example two is not, and
will throw an error. One of the first errors you should check should you

experience errors is proper spelling, tabbing, and capitalization.
Additionally, it is considered good form to properly comment and

document your code. This is accomplished through a variety of means,
primarily code commenting. There are two methods to do this: Line

comments and block comments.

// This is a line comment, the double forward slash denotes this. It can only
occupy one line.

/*

This is a comment block.
Anything between the
forward slash and

asterisk is a comment
*/

Those are basic conventions implemented by the interpreter. If you don't
follow these, your code (and as a result, your mod) will not load and the

game will crash.

6.3)variables

• InstanceName
• FilePath
• Priority
• Mass
• LifeTime
• Sharpness
• HitsMOs
• GetsHitByMOs
• Color
• R
• G
• B
• Atom
• Material
• CopyOf
• TrailColor
• TrailLength
• RestThreshold

• SpriteFile
• FrameCount
• SpriteOffset
• X
• Y
• AngularVel
• AtomGroup
• AutoGenerate
• Resolution
• Depth
• DeepCheck
• Framerate
• EffectStartTime
• EffectStopTime
• EffectStartStrength
• EffectStopStrength
• ScreenEffect
• EffectAlwaysShows
• DeepGroup
• JointStrength
• JointStiffness
• DrawAfterParent
• BurstTriggered
• EmittedParticle
• ParticlesPerMinute
• BurstSize
• Spread
• MaxVelocity
• MinVelocity
• PushesEmitter
• EmissionEnabled
• EmissionsIgnoreThis
• BurstScale
• BurstSpacing
• EmissionDamage
• FlashOnlyOnBurst
• EmissionSound
• LoopSetting
• BurstSound
• EndSound
• Flash
• EmissionCountLimit
• BurstDamage
• EntryWound
• ExitWound

• DetonationSound
• Path
• StanceOffset
• StartThrowOffset
• EndThrowOffset
• TriggerDelay
• ParticleNumberToAdd
• GibImpulseLimit
• GibParticle
• Count
• InheritsVel
• ParticleCount
• Particle
• Shell
• FireVelocity
• ShellVelocity
• Separation
• RoundCount
• RTTRatio
• RegularRound
• TracerRound
• GoldValue
• JointOffset
• SharpStanceOffset
• SupportOffset
• SharpLength
• Magazine
• ParentOffset
• FireSound
• EmptySound
• ReloadStartSound
• ReloadEndSound
• RateOfFire
• ReloadTime
• FullAuto
• FireIgnoresThis
• ShakeRange
• SharpShakeRange
• NoSupportFactor
• ParticleSpreadRange
• ShellSpreadRange
• ShellAngVelRange
• MuzzleOffset
• EjectionOffset
• GibWoundLimit

• OneHanded
• Offset
• Discardable
• BreakWound
• PinStrength
• BodyAnimMode
• BodyAnimDuration
• Status
• Health
• Team
• CharHeight
• Door
• OpenOffset
• ClosedOffset
• OpenClosedAngle
• AngleDegrees
• DoorMoveTime
• ClosedByDefault
• ResetDefaultDelay
• SensorInterval
• StartOffset
• SensorRay
• SkipPixels
• Rotation
• DoorOpenSound
• OpenClosedOffset
• OpenAngle
• ClosedAngle
• HFlipped
• DeathSound
• GibSound
• AimAngle
• AimDistance
• HolsterOffset
• HeldDevice
• Hand
• MaxLength
• IdleOffset
• MoveSpeed
• Foot
• ExtendedOffset
• ContractedOffset
• BodyHitSound
• PainSound
• DeviceSwitchSound

• Head
• Jetpack
• JumpTime
• FGArm
• BGArm
• FGLeg
• BGLeg
• HandGroup
• FGFootGroup
• BGFootGroup
• StrideSound
• StandLimbPath
• StartSegCount
• SlowTravelSpeed
• NormalTravelSpeed
• FastTravelSpeed
• PushForce
• WalkLimbPath
• CrouchLimbPath
• CrawlLimbPath
• ArmCrawlLimbPath
• ClimbLimbPath
• JumpLimbPath
• DislodgeLimbPath
• MountedMO
• ImpulseDamageThreshold
• AimRange
• Turret
• LFGLeg
• LBGLeg
• RFGLeg
• RBGLeg
• LFootGroup
• RFootGroup
• LStandLimbPath
• LWalkLimbPath
• LDislodgeLimbPath
• RStandLimbPath
• RWalkLimbPath
• RDislodgeLimbPath
• EmissionOffset
• MinThrottleRange
• MaxThrottleRange
• EmissionAngle
• LifeVariation

• StableVelocityThreshold
• LThruster
• RThruster
• ULThruster
• URThruster
• LHatchDoor
• RHatchDoor
• HatchDoorSwingRange
• HatchDelay
• HatchOpenSound
• Velocity
• CrashSound
• CanLand
• WillIdle
• Position
• RLeg
• LLeg
• MThruster
• RaisedGearLimbPath
• LoweredGearLimbPath
• LoweringGearLimbPath
• RaisingGearLimbPath
• WrapX
• WrapY
• ScrollRatio
• BitmapFile
• GoldCost
• MaterialFile
• BGColorFile
• BitmapOffset
• FGColorFile
• DebrisFile
• DebrisPieceCount
• DebrisMaterial
• TargetMaterial
• OnlyOnSurface
• MinDepth
• MaxDepth
• DensityPerMeter
• LocationOnPlanet
• GlobalAcceleration
• Terrain
• BackgroundTexture
• FrostingMaterial
• MinThickness

• MaxThickness
• InAirOnly
• Location
• AIMode
• SceneName
• TeamCount
• PlayerCount
• TeamOfPlayer1
• FundsOfTeam1
• CPUTeam
• Difficulty
• SpawnIntervalEasiest
• SpawnIntervalHardest

Sound
ContentFile
MOPixel
Color
Atom
Material
MOSRotating
AtomGroup
MOSParticle
Attachable
AEmitter
Emission
TDExplosive
Gib
Round
Magazine
HDFirearm
HeldDevice
ADoor
Sensor
Actor
Arm
Leg
AHuman
Vector
Turret
ACrab
ACDropShip
Exit
ACRocket
SceneLayer
TerrainObject
SOPlacer
TerrainDebris

 6.4)offsets

Due to large amounts of requestsone, I am going to make a guide about
how to use offsets correctly and not just guess and hope to get lucky. I'm
not the best at explaining things, so bear with me. If you don't know the
basics of modding or even what offsets are, get out. Seriously.

OFFSETS

What you see here is the X and Y axis for Cortex Command

-X = Right
+X = Left

-Y = Down
+Y = Up

The first thing you'll probably notice is that the X axis is switched.
Rather than -X meaning left like in
the conventional grid, the kind you'll see in Algebra and the sorts, -X
mean right and vice versa.

The most time you're probably going to need this is when you're
changing offsets for that new gun you've just sprited. Most people try not
to sprite actors larger or smaller than usual.

Imagine that this is your new weapon you've just sprited. You want
it so that your clone will hold it properly. Meaning you'll need to fill
out these key chucks of code. (the meanings will be in parenthesis)

Code:
 SpriteOffset = Vector (This sets the origin
of the sprite, should be in the very middle of
your sprite)
 X = ?
 Y = ?

Code:
 JointOffset = Vector (The placement of the
main hand)
 X = ?
 Y = ?

Code:
 StanceOffset = Vector (The placement of the
shoulder when carrying the gun)
 X = ?
 Y = ?
 SharpStanceOffset = Vector (The above but
when aiming down sights)
 X = ?
 Y = ?
 SupportOffset = Vector (Placement of
secondary hand)
 X = ?
 Y = ?

Code:
 Magazine = Magazine
 CopyOf = Magazine SMG
 ParentOffset = Vector (Where the magazine
goes)
 X = ?
 Y = ?

Code:
 MuzzleOffset = Vector (Where the bullets fire
from)
 X = ?
 Y = ?
 EjectionOffset = Vector (Where the shells, if
any, eject)
 X = ?
 Y = ?

So, how are we going to find the correct coordinates?

Easily.

First of all, we'll need to set the Sprite offset.
Our sprite here is 18 by 10 pixels.

Therefore...
Code:
 SpriteOffset = Vector
 X = -9
 Y = -5

Just take half of your sprites dimensions, negate it, and plug it in. That's
all you need to know for Sprite Offsets. Simple, right? This bit of code
will help you a lot later on.
Note: If your sprite Offset has a decimal, just round up. There's no such
thing as half a pixel.

Now, lets move onto the Joint offset.

This will be where the main hand goes. Setting this one up is a bit more
trickier.
First, make a mark off where you're Sprite offset is, which should be in
the middle

This is where we will start counting. Start marking how far you want
your hand to the left or right.

I counted 4.

Code:
 JointOffset = Vector
 X = 4
 Y = ?

Remember, +X means left and -X means right.

Now count how much you want to go up or down.

I counted 3.

Code:
 JointOffset = Vector
 X = 4
 Y = -3

And for whatever reason, JointOffsets and Parent Offsets (Which is
what we are currently working on) need to be the opposite of what
you want. Why, I do not know.

So:
Code:
 JointOffset = Vector
 X = -4
 Y = 3

There, you're done. That's all you have to do to set an Offset.

Things you might have missed:

• After setting the Coordinates for JointOffsets and Parent Offsets,
negate them. (Negatives turn to positives, and vice versa)

• The -X mean right and +X means left
• If you've followed this tutorial and the Offset still doesn't match up,

negate for good measure.

 6.5)templates of a gun with comments

AddEffect = MOPixel // This is the instance call. We're adding an effect, it's an MOPixel
 PresetName = Bullet Blaster Pistol // This is the instance name, so the
instance can be recalled upon later
 Mass = 0.25 // This is the mass of the object, in kilograms

LifeTime = 650 // This is how long the particle will last before disappearing, in
milliseconds.

 Sharpness = 3 // This is how sharp the MOPixel is; how well is knocks terrain loose
and penetrates objects.
 HitsMOs = 1 // This boolean value defines if the MOPixel hits other things.
 GetsHitByMOs = 0 // This boolean value defines if the MOPixel gets hit by other
things.
 Color = Color // This starts the RGB of the MOPixel's color.
 R = 255
 G = 255
 B = 255
 Atom = Atom // This starts the definition of the MOPixels one and only Atom.
 Material = Material // This starts the definition of the Atom's material.
 CopyOf = Bullet Metal // This copies a previously defined material
to use.
 TrailColor = Color // This starts the RGB of the trail effect's color.
 R = 255
 G = 255
 B = 255
 TrailLength = 30 // This modifies the length of the trail.

AddAmmo = Round // The instance call, defines the next text as parts of a round.
 PresetName = Round Blaster Pistol // The name used to refer to the instance
later.
 ParticleCount = 2 // The number of particles created when this round is used. This
is what makes a shotgun a shotgun
 Particle = MOPixel// Defines the particle that will make up the round. Does not
need to be a MOPixel.
 CopyOf = Bullet Blaster Pistol// Copying a previously defined and
named object.*
Shell = MOSParticle // Defines the Shell that will eject as the round fires. Does not need to
be a MOSParticle.
 CopyOf = Casing // Copying a previously defined and named object.
FireVelocity = 80 // This is the velocity at which the round particle will be fired.
ShellVelocity = 10 // This is the velocity at which the shell will be ejected. Separation = 5 //
This is the variance of the X position from the MuzzleOffset of the HDFirearm.

AddAmmo = Magazine // The instance call, defines the next text as parts of a Magazine.
 PresetName = Magazine Blaster Pistol // The name used to refer to the
instance later.
 Mass = 1 // The mass in kg for example; 0.01 would be 10g, 0.1 would be 100g and 1
would be 1kg.
 HitsMOs = 0 // Boolean value that determines if this particle can hit by other particles.

 GetsHitByMOs = 0 // Boolean value that determines if this particle can hit by other
particles.
 SpriteFile = ContentFile // Tells The Magazine to use the sprite specified
 FilePath = Base.rte/Devices/Pistols/MagazineEnergyA.bmp
 FrameCount = 1// How many frames to use.
 SpriteOffset = Vector

X = -2
 Y = -2
 ParentOffset = Vector
 X = 1
 Y = 1
 EntryWound = AEmitter // The emitter to use for where the bullet enters the
weapon.
 CopyOf = Dent Metal
 ExitWound = AEmitter // The emitter to use for where the bullet exits the weapon
 CopyOf = Dent Metal
 AtomGroup = AtomGroup
 AutoGenerate = 1
 Material = Material // Defines the material that the round will be made up
of.
 CopyOf = Military Stuff // Reference to the material you want the
round to be made of.
 Resolution = 2
 Depth = 0
 DeepGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Military Stuff
 Resolution = 3
 Depth = 1
 DeepCheck = 0
 JointStrength = 200 // How much force is required to be slung out of your grip.
 JointStiffness = 1 // How much force is required to move the joint.
 JointOffset = Vector
 X = 0
 Y = 0
 DrawAfterParent = 0 // Boolean value that determines if it is drawn in front of the
parent a.k.a weapon(1) or not (0).
 RoundCount = 10 // How many rounds are in the magazine.
 RTTRatio = 0 // RoundToTracerRatio, how many rounds:tracers.
 RegularRound = Round // Defines which round instance to use as the regular round.
 CopyOf = Round Blaster Pistol
 TracerRound = None // Defines which round instance to use as the tracer round.

AddDevice = HDFirearm // required for an HDFirearm
PresetName = blaster // what you want the gun's name to be in-game
Description = A compact sidearm for a good price and decent performance! // in-game
description of gun
AddToGroup = Weapons // what section the gun will be in
Mass = 4 // the weight of the weapon
HitsMOs = 0
GetsHitByMOs = 1
SpriteFile = ContentFile // what file to use for the appearance of the gun
FilePath = base.rte/blaster

FrameCount = 2
SpriteOffset = Vector // the offset of the gun while being held X = -5 Y = -4

EntryWound = AEmitter
CopyOf = Dent Metal

ExitWound = AEmitter
CopyOf = Dent Metal

GoldValue = 10 // the value of the gun in-game
AtomGroup = AtomGroup
AutoGenerate = 1
Material = Material

CopyOf = Military Stuff
Resolution = 4
Depth = 0 DeepGroup =
AtomGroup AutoGenerate = 1
Material = Material CopyOf =
Military Stuff Resolution = 4
Depth = 10 DeepCheck = 0
JointStrength = 75
JointStiffness = 0.5
JointOffset = Vector X = -1 Y = 2
DrawAfterParent = 0
OneHanded = 1
StanceOffset = Vector X = 12 Y = 0
SharpStanceOffset = Vector X = 13 Y = -2
SupportOffset = Vector X = -1 Y = 3
SharpLength = 90
Magazine = Magazine // which magazine to use
CopyOf = Magazine blaster
Flash = Attachable // what muzzle flash to use
CopyOf = Muzzle Flash Pistol
 FireSound = Sound // the sound the gun to make when it fires
AddSample =
ContentFile FilePath = Dummy.rte/Devices/Weapons/Rail Fire.wav
EmptySound = Sound // the sound the gun makes while the magazine is empty and the trigger is
pressed
AddSample =
ContentFile
FilePath = Base.rte/Devices/EmptyClick3.wav
ReloadStartSound = Sound // the sound that plays when you start to reload
AddSample = ContentFile FilePath = Base.rte/Devices/ReloadStart.wav ReloadEndSound =
Sound // the sound that plays when reloading is done

AddSample = ContentFile
FilePath = Base.rte/Devices/ReloadEnd.wav
RateOfFire = 55 // the rate of fire in milliseconds
ReloadTime = 1600 // the reload time in milliseconds
FullAuto = 0 // whether or not the gun is automatic or not
FireIgnoresThis = 1
ShakeRange = 7
SharpShakeRange = 4
NoSupportFactor = 1.8
ParticleSpreadRange = 0
ShellSpreadRange = 8
ShellAngVelRange = 2
MuzzleOffset = Vector // the offset for the muzzle flash

X = 7
Y = -1

EjectionOffset = Vector // the offset for the bullet casings
X = -3
Y = -1

GibWoundLimit = 2 // the number of hits the gun takes before breaking
AddGib = Gib

GibParticle = MOPixel
CopyOf = Spark Yellow 1

Count = 3
Spread = 2.25

MaxVelocity = 20
MinVelocity = 8

Chapter 1

 spriting

 7.1)basic introduction on sprites

Giving your creations a colorful look is a difficult process for the
beginner. Sprite art is tricky to shade properly if you don't know
what you're doing. This is the difference between a hobbyist, a
newbie, and a professional: Most will use extremely different
forms of sprite shading. It's take hours to cover all the possible
pixel art coloring techniques in-depth.
Here are brief descriptions of several of the main types of sprite
shading for graphics. You can find many examples online if you
look around. These three are typically used in games and
animated series.

Pillow Shading
In one word: Don't do it! This is typically where the inside of an
object is brighter than the rest, and you make it darker in colors
the deeper it goes and along the outlines. It looks horrible unless
all the other pillow shade sprites are the same style. Even then, it
doesn't look all that good!

Comic Shading
This is typically when your sprites have dark black edges. The
inside colors also have outlines, and usually only have two or
three different shades in their associated parts. It looks a lot like
what you'd find on a cheaply animated cartoon. However, unlike
pillow shading, sprites with comic shading do look quite good if
everything matches the style.

Natural Shading
This is the most difficult, and most effective type of sprite shading
to pull off. Generally speaking: Your outlines are all a somewhat
darker color of the other on the sprite in that area. For example,
someone in blue pants. Their outlines would be dark blue. You
then shade all the inner pieces with lighter colors as if sun was
shining in a direction, typically north west.

Pro tip: It is with natural shading that other colors make a large
difference. Purples are fantastic for shadows. Using light green
helps add a vibrant "alive" mood to the sprite graphics.

What is Pixel Art?
First let's learn what a pixel is.

A pixel is the smallest part of an image. The word pixel is based
on a contraction of pix (for "pictures") andel (for "element") Pixels

are normally arranged in a regular 2-dimensional grid, and are
often represented using dots, squares, or rectangles.

Now we know what a pixel is, how is it art?

Well, you have probably seen a basic pixel image before. Most of
online games are made with pixel art, like Habbo Hotel. The art of
pixeling is basically making the eye think a color but blend them
together. Ok, OK! I know that wasn't too clear, what I mean is by
making each pixel a slight variation of that color, the eye then
sees it as one color changing.

Pixel Art - How is it generally made?
Pixel Art is normally made almost one pixel at a time! (that's why
its RARE to see LARGE pixels.) Using a graphic program of
choice, you don't use any fancy filters or softening smudges or
any of those tools. It seems simple enough, but it really is difficult
to master. Here is an example of a complex Pixel:

This is a complex Pixel, so much detail is in this it's hard to

believe!

Here are a group of pixel game characters from the online chat
game, Habbo Hotel. (www.habbohotel.com)

What are some of the uses of Pixeling Art?
Pixeling Art can be applied almost anywhere computer graphics
are used (because there basicly the same thing, but done
manually and not with code filters etc). Pixels normally have a
more "edgy" look to them, but they are appeling and high in
demand!
Pixeling can be used in all of these cases:

• Logos
• Cortex command sprites!!!!!!!!!
• Site Banners
• Signatures
• Avatars
• Word and other print-outs (business cards, flyers, etc)
• Computer Games
• Flash movies
• Flash Websites
• and many more!

A very good Pixel Runescape Signature.

I want to do Pixel Art! What must I do to start?

So you want to try your hand at pixeling? It is A LOT harder then it
looks. But do not fear, practice makes perfect. The best platform
for pixeling (and my choice) is Microsoft Paint (if your on a
windows computer, you have it!). Another free option you might
wish to use (Don't cheat!) is Paint.net.

Paint.Net is a super verison of MS Paint, it is hosted for free and
can be downloaded at: www.paint.net (the right one, not the left!)

If set correctly all of these other programs will allow you to pixel
with them:

• Photoshop (all versions)
• Macromedia Fireworks(all versions)
• Corel Painter Essentials (all versions)
• Ms Paint (all versions)
• Paint.Net (all versions)
• there are a TON more out there, almost all programs that allow

you to create an image you can pixel with.

 7.2)cortex command palette

Cortex command uses a very specific palete.
In order for you to make cortex command sprites you should
always edid a pre exsisting sprite.
Keep in mind than the pink is the background and than it will not
show in the game nor will it cound as a part of your sprite.

7.3)giving your sprites correct shading

7.4)sprite figures introduction and how to make one

The main character's sprite...Possibly THE most important part of
your game. Yeah, you can argue that "Oh no, the programming is
more important! Without it there's nothing else!" or "No the
scrolling engine! It makes things smooth!" or "It's the music! Music
is more important than art! The music sets the mood in the
background!"...But no one will see the programming, a nice
scrolling engine doesn't matter if you're scrolling over a picture of
stickmen, and the music only sets up half the mood. If you're
putting out advertisements or anything, making the back of your
game's box because it's so amazing that it's going to consoles or
whatever, you can't put music on it...Nor programming...You're
down to screenshots. Screenshots are what people see first, and
that's what they base their opinions on instantly, regardless of
whether they realize it or not. If they check out a shot and see
stickmen walking on circles of tiled grass, they have in their mind
"Ugh, what an ugly game..." and when they play it (IF they play
it...A lot of people won't even download or check out a game if the
screenshots are ugly) they go into it thinking "This is an ugly
game..." and the wonderful music and scrolling engine and
programming you have are all ruined because the player is
playing your game only half caring. Art is EXTREMELY important
in making your game, and yeah, you CAN get away with ugly
stickmen...But you'd better have one incredible plot, because
you're going to have to make up for that. And even if you have the
most amazing plot in the world, it's not going to matter if people
don't sit through your ugly graphics long enough to find out about
it.

Now specifically, the most important sprite is the main character's
sprite. "Why that one? What about my super evil arch-nemesis
bad guy set to take over the world for some unknown reason?"
Well, he's important too, being an important character in the plot,
but he's not as important as the main character. Why? Because
the main character is what the player is going to be looking at for
the entire game. They might walk through 40 different types of
tilesets and journey all over the world and everything, but the one
constant graphic is going to be that main character's sprite
walking along. If the player doesn't find the main sprite appealing,
and even finds it kind of ugly, he's not going to be very
enthusiastic about playing because he doesn't care about the
character...And if he doesn't care, the plot won't have as much
effect on him, and he might not even finish playing the game
because he just hates looking at the main character's sprite so
much. Yeah, it's not a very bright way of playing a game, but why
would I play a game where I hate looking at "myself" when I could
go play another one where I'm a wicked looking knight or a
mysterious looking mage or something?

Okay, so I think I've made my point...The main character's sprite
(and everyone else in the party if you have more than one) is the
most important. So where do we go from here? Well, let's talk
about limits...and then how to get around them. Here are some
quick sprites I did up from that one up above:

Okay, so you're Mr. Game Artist...And you're working with a
programmer who wants you to make up the sprites. So you come
up with the first one...39x54, but it's really pretty irrelevant. This
first sprite is the equivalent of drawing a rough sketch of
something on paper to plan out what you're thinking. From this big
sprite we can see how all the armor goes and everything. But of
course, unless you're working in SVGA, a sprite this huge is
probably not going to be used (it'd take up way too much of the
screen). So you decide to chop it down a bit...Okay, about in half,
down to 24x28. Now it's a more realistic size, and the programmer
won't be laughing his head off and then kill you for expecting him
to use huge sprites and keep the engine running fast. The main
problem with this sprite, however, is that 24x28 is a weird number
(you'd have to have, maybe 24x24 tiles or something...Using
rectangular tiles gets hard to work with for complex tiles, and if
you have a character sprite that's a certain size, you usually want
to make your tiles close to that size (at least the width, height isn't
as important) otherwise you have to have doors made of 4 tiles
and such, which get aggrivating when making maps, and you can
get messed up when you try to align things)). SO, you decide to
whittle the sprite down some more...Down to good old 16x16.

16x16 is the old "general" size of sprites. This is what Final
Fantasy and tons of other RPGs used to use. It has something to
do with sprite sizes that are powers of 2 being quicker to display

or something...I don't really know, heh. But it was a nice number
because it would allow somewhat large tiles to allow detail, but not
too large to slow the engine down. Through time, it's just become
a tradition to use 16x16 for some reason (the limits these days are
pretty non-existant when it comes to this kind of thing...You could
probably get away with using the first huge sprite on the left if you
wanted and not have to worry). Anyway, I've redrawn him yet
again, shrunk down to 16x16 on the right...So now he still "feels"
like the large one, but he's nice and small. However, what
happened to the sides of his armor? The 3 sections to his gloves?
The triple boot thing? His belt buckle? They're all gone!

That's right, they ARE gone...We've run into the limit of sprite size.
Now really, this isn't much of an issue these days, as I've said...As
you can make sprites pretty much whatever size you want.
However, having an understanding of how to work with tiny sprites
will make working with large sprites not only MUCH easier, but it
will help you develop a style and learn how to make them look
better. Check out the middle size sprite...It's basically ugly (heh, I
didn't intend for that, but the more that I look at it the more I hate
it). The character is stumpy and off balance looking...It just looks
cluttered, and it's hard to see what goes where. The reason for all
this is that everything has an outline. EVERYTHING. Every piece
of armor and such. And it looks bad because there's too much
black crowding in places and in general it's just not working...

So the big question is "Well if I don't outline everything, how am I
going to show different parts of the sprite?" The answer to that is
to use colors strategically. If you're drawing a character with a
cape that comes around the front, you don't need to outline the
cape with black to split it apart from the clothes underneath. All
you have to do is figure out what color you can use to contrast it
the right way. Basically what you want is to SUGGEST details.
Just like you don't have to show each individual finger to represent
a hand, you don't have to show each individual section of clothing

to represent it. You just need to suggest the feeling of it. And this
is used everywhere...Though nowadays with sprite sizes being
pretty much unlimited and most of it all switching to 3d anyway, it's
not really a common thing to see anymore, and if it IS used, it's
probably just a style choice of the artist. In the old days though,
when it was necessary to have smaller sprites but still show off
detail, it was used often. For instance, let's check out some sprites
from Final Fantasy 2 and 3:

First up is the coolest character in any Final Fantasy game...Kain,
the Dragoon Knight! Heh...Now check out that sprite...It looks
good. You can tell he's got dragon-spikey-cool armor going on.
But take a look at his leg, in the front view. He's got red
(uhh...Pants? Spikes? I don't know, heh), and then blue
boots...But they're not divided by a black line. And yet, you can
still see there's a difference between them. This is a basic
example of using color division (ooo, I made up a term, heh) in
sprites. Also check out his feet. There's no black line along the
bottom of them...They just suddenly "end". The reason is that
there doesn't NEED to be a black line there. Because there are
black lines on the sides of the leg, your eye automatically draws
an "invisible" line connecting the left side to the right side, using
the end of the colors as an edge. Now it may not SOUND like
much, but that means an entire row of pixels was saved...That row
can be used for doing details on the face or other parts of the
body, instead of wasting it just to outline that foot, when it's not
even necessary. Another small part would be the red "eyes" on his
helmet. They're just red on blue, no black. A final section is the top
of his helmet. On the front and back views, there's no black line on
the very top. Again, that would take an entire row for it and it's not

necessary. Your eye says that because the blue in the middle
sticks up above the blue beside it, it's higher, and since it's got
black surrounding it, it's also flat and a part of his helmet, and not
just a random blue pixel flying by behind him. Kain isn't a great
example of extreme color division (usually cloth requires it more
than armor does because armor is so segmented and usually
doesn't have much color difference on the sections), but he's cool,
and so he gets to be on here, heheh...Next up:

A random NPC from a town! I only grabbed these two views of her
because the others didn't have much that I wanted to show. Now
the MAJOR place that you'll see color division is hair. Check out
her hair...There's no black line that divides the red of her hair from
the peach of her skin...But you can tell her hair isn't just sunburnt
skin, right? There's enough difference between the two colors that
a black line isn't necessary. Plus if there was a black line, imagine
what that would do to the eyes! You wouldn't be able to tell what's
part of the eye and what's part of the hair! By using color divisions,
the hair/face fall into the background, becoming less important
than the eyes, which are used for expressions and such. Now
check out her torso chunk (from the neck to the waist, including
the arms). The only black lines there are the ones that outline the
full piece...They're on the "outside" of the area. No black lines
come in and cross the "inside". Again, there's no lines outlining
her blouse and her skin, but you can tell she's wearing something,
right? See, when you're working with bodies that are like 2 pixels
high, you don't have the extra space to outline everything...And
like I said before, sometimes outlining everything just makes the
sprites look crowded with black, and the black can overpower the
color, making your sprites look more jumbled. The last point is her

hair, where there's the yellow tying thing (heh, I don't know what
it's called, just go with me here)...You know what it is, and you
know it's there, even though it's not outlined. Am I getting the point
across? Heh...Now there ARE some black lines that cut through
the inside, namely the line of the jaw and the waist...THESE are
necessary, because they segment the character. If you have NO
black lines dividing pieces, then it looks like a large colored blob of
pixels...This is a mistake a lot of people make...Not ENOUGH
division of the sections. Be careful on this...It generally just takes
practise, learning what parts of the sprite to emphasize and what
parts to blend. Next let's take a look at the battle sprites...

Cecil and Kain, snatched from the battle scenes of FF2. These
sprites are 16x24, unlike the map sprites which are
16x16...Because of this, they're much more detailed...And
YET...They still use color division...See, Mr. Artist gets a whole 8
more pixels to work with now. "Ooo!! That means I can put in all
the black outlines!" Well, you COULD do that...But what you'd end
up with is basically your 16x16 sprite, but with black outlines
separating everything...And really, it wouldn't look much better
than the 16x16 sprite, which means you might as well save your
programmer some work and just use 16x16 sprites. "I don't want
to do that! I want fancy sprites!" Okay then, listen up and study
these sprites...

First up is Cecil on the left...Now the main part that sticks out is
his helmet...Check it out, notably the piece that covers his
eyes...Follow the black line. Follow...follow...oop! Where'd it go? It

just stops! That's right. From just past the middle of his face, the
line becomes a dark purple line, goes through and shapes his
helmet, then attatches back up to the black line at the top. "So
what was the point of THAT?" Well, it has to do with contrast. If
you glance at his head, the first thing your eyes focus on is the
front of it, his facial area. Then your eyes scan around to the back
and take in the whole thing. The reason your eyes point to one
spot first, is because of the collection of black that's there. If that
purple line were black, it would stand out and fight the face for
attention, which would make the face seem less important (I
know, this all sounds hokey, but trust me here, heh...). Because
it's purple, it fades in with the rest of the purple armor. Squint your
eyes and look at the sprite a bit...The purple areas all seem to
blend together, because they're similar, but the black areas still
stand out on their own. Okay, so you don't have to get THIS
technical and philisophical about the lines...But just keep in mind
that you don't always need BLACK outlines. Now check out his
arm (the one that's closest to us)...Again, you can see there's no
black lines from the shoulder down to the hand...It's divided with
colors, and you can see there are divisions. Also on his chest
armor, his legs, and so on. It's all done with color
separations...Dark colors used instead of thick black to divide
things.

Now Kain, because he's also wearing armor, is similar to Cecil in
where the colors are used. In fact, if you look close, his legs are
exactly the same as Cecil's except that the colors are changed,
heh...While we're on the subject of the legs...Check out Cecil's,
then Kain's. Notice the difference? The bottom right corner on
Cecil has an orange spot and a corner pixel. Now if you look at
them, those TWO pixels change the look of the boot almost
completely. Kain has rounded solid boots, whereas Cecil has an
orange part sticking back (possibly his heel?) and the armor is
sharp-cornered, like jagged. That orange pixel has no black
outline...It's just an orange pixel, but it changes the look of the

armor. Okay, so now check out Kain's helmet...The dragony fin
part...The black outlines the back, and the inside is just alternating
aqua ad yellow. There's enough difference in the colors that
they're separate looking, and there's no black outlines on them,
which would crowd up that section of the helmet and make the
sprite look ugly. Kain has some more divisions (most notably on
his forearms), and the black lines make his armor feel like it's solid
on top...Cecil's purple armor, right on the wrists, seems more like
a sleeve, while Kain's is a separate segment, thanks to the black
line. Black can divide things up, but it can also make it hard to tell
what's going on. Again, it'll take practise to learn how to use black
like "the masters", heh. So now we'll check out Final Fantasy 3:

It's good old Edgar...Fully decked out in his fancy clothes. For a bit
of useless information, the character sprites in FF3 are 16x24, the
same size as the battle sprites in FF2. Also, in FF2 they switched
between 16x16 sprites for the map and 16x24 sprites for the
fights, whereas in FF3, they just use the 16x24 sprites for
everything. I guess they made the battle sprites in FF2 and fell in
love with their look or something, heheh...Anyway, these sprites
use massive color division. In fact, oddly enough, the larger
sprites use it more than the smaller sprites do, heh...The lesson
from that? Using bigger sprites doesn't mean you don't have to
still think about what you're doing. All those black lines you blob
around each individual strand of hair could be used as shading or
details...Think about it as you do it. So now, to get to Edgar...The
main thing to check out is his hair...Specifically where it falls down
on the face...Just dark strands, no black outlines. As well, note the
very top of his head. He has a part in his hair...That one black

pixel is missing. Logic tells us that if we want a bump down in the
hair (for the part), we should have the black line bump down...But
we don't need that. All we need is to eliminate a pixel and break
up the line. When your eye is travelling along the top line of the
head, it comes to the break, dips down until it finds color, and
comes out again, following the shape of the pixels...That creates
the dip in his hair, and doesn't take a big fat black pixel. Watch the
green lining on his clothing too, it's just there, no black
outlines...Black outlines would make the lining (especially on the
cape in the back view) stand out too much and start to look like a
separate piece of clothing/armor. On an interesting note, there IS
no black line on here, technically. In FF3 they went with colored
lines...If you get close up to the outlines, you can see a tinge of
green in it. Because of this green, the sprite looks a bit more
"realistic" than the FF2 sprites, which look like "drawings" because
of the harsh contrast of black. This green softens the look out. The
final note for Edgar (there are other things but I'm assuming that
by this point you're already looking at the sprites and finding
things on your own, for that's how you'll learn) is that there's no
separation between his legs in the front view. This is,
unfortunately, an inconvenience of using even numbers for sprite
sizes (16 for the width). Programming-wise, calculations are faster
if the numbers are even, so it was standard practise in the old
days to use even numbers on the sprite sizes. The problem with
this is that there's no middle column of pixels, and thusly no actual
center point on the sprite...If the sprite had a middle column, you
could have a line going up it at the legs to separate them evenly,
and maybe even throw in a nose between the eyes...But because
there are two middle columns, you can't have a line dividing legs
unless you either shrink your whole sprite's width so that there's a
column of blank pixels on one side, or you have uneven widths for
legs. The double column problem also affects the faces, which is
why if you check out Edgar, he's got one short eyebrow and one
long one...If both eyebrows were long, it would turn into a unibrow,
heheh. If both were short, he'd look happy-go-luck, and he's

usually burdened with stuff...So the one pixel there makes it look
sort of like he's trying to figure something out. Okay, that's enough
of Edgar...Let's check out the next character, Terra:

So by now you should have the usual "checkpoints"
memorized...Check out her hair, the top of her head with the
missing pixel, her legs, and her torso. Something to note, after
you're done all that, is her chin...There's no black line across it,
dividing it from the body. If you remember the NPC from FF2
above, there IS a black line...So why the difference? The NPC
looks like she's an overweight woman, like a generic medieval
mother. Terra, however, appears to be thinner and in better
shape. Part of the reson for this is her chin. If you think about a fat
person's head, there's usually a double chin dividing the head
from the chest...And if you have some fat, and fold it, you get a
crease...a dark line. So on the NPC, there's a dark line that
separates her head more from her chest, making it feel more
segmented, and more like there's a large flat line dividing it...a line
of fat, basically. Now in Terra, she's thinner, so instead of a thick
line, she's just got a few darker pixels. It shows that there IS a
chin there, it's just not a very definate chin. A black line could also
be used on characters with square jaws (usually big barbarian
type people), to show the definition. The lack of a heavy line,
much like a pointed chin, makes the character look more feminine.
Now we'll move on to Locke:

The main things in Locke are, like the others, the hair, the legs,
the torso, the headband, etc. Now Locke seems to be more
divided because he has that funky jacket on...But yet, if you look
close, drawing a curved line following his body from one hand to
the other, there are no black pixels! The color change is so drastic
between the blue and the peach, however, that it feels like it's
divided. Now if the dark blue on his jacket was replaced with
black, his jacket wouldn't be a wide blue jacket, it would be a black
jacket with a thin blue stripe going up it...Another plus of not
overdoing the black on a sprite. On the back and side views, the
tied parts of his headband are outlined with black, while the part
around his head isn't...Why? Because the tied parts stick out from
his head, and they're different segments of him...The headband is
tight around his head, so it doesn't need to be defined separately.
Now do you see where all this is going? If you haven't got it drilled
into your head now, then let me state it again..."You do NOT need
to outline everything." Now the next time you're playing some
games, and see some sprites, check out where outlines are used
and where color separations are used...You'd be surprised how
many sprites DO use color separations.

So now that you've read all the other chapters and have done
some analyzing of your own, and thinking about how sprites are
set up and all (if you haven't done any of this, then go do it
because it will make things much easier for you when you get
down to making a bunch of your own sprites), it's time to start
actually making sprites. We're going to look at a few different
styles of sprites, but we'll start off with the classic and most widely
used one (for RPGs that is), the Final Fantasy 2 style sprite. Even
if you're not interested in doing small 16x16 sprites, and you just
want to learn to do bigger ones, it's still a good idea to read it
all...You can pick up a lot of skills from doing small sprites that you
can use when you're doing bigger sprites. Learn from everything
you can. With that said, here we go with FF2 sprites:

Now the first thing you have to know about FF2 sprites, is that
they're all divided up in a certain way...This is a 16x16 box that
you see above the text...Along the side is a line of orange, yellow,
orange. Those lines are a guide of where everything goes. In an
FF2 sprite, the waist down is given 3 pixels (the bottom orange
guide), the torso from the neck to the waist is given 3 pixels as
well (the yellow guide), and the head is given a massive 10 pixels
(the top orange guide). If you talk to people about sprites you'll
probably hear the term "SD" come up often...SD stands for "Super
Deformed" and is used to describe scenes in anime when a
character who's drawn normally will suddenly shrink down into a
stubby sort of doll looking state where their head is about as big
as their body...Anyway, that's what FF2 uses, and a lot of the
beginning RPGs. This is because most of these were made in
Japan, where SD is used in anime, and it's also good for
expressions. In the west, we tend to want "realistic" looking
characters, where the heads are small and in proportion to the
bodies. The problem with this in the old days, however, is that

when you had a sprite box that was only 16x16 to work with, a
realistic head would have to be about 2 pixels wide and 4
tall...While it's in proportion, it doesn't look very good because you
end up with faceless characters, and the most important part of a
character is its face, because the player identifies with it more.
The use of a huge head in sprites was common because it
allowed for good expressions as well...With a huge head, you
could have them bow their head, shake their head, blink in
amazement, grow huge shocked eyes, close their eyes, yawn,
shout, and so on. This gives the characters more "life" and makes
them more interesting...With a small "realistic" head, you're stuck
with maybe changing the shading on the 6 pixels and that's about
it. For doing realistic proportions, it's best to use larger sprites (like
Phantasy Star IV did). Anyway, now you know why everything
was SD for so long, heh...This is all just my speculation however, I
could be totally wrong.

So we'll start with the basic head. This is, pixel for pixel, the basic
structure of an FF2 sprite's head...What a lot of artists will do, if
they have to make a lot of sprites, is make a basic "dummy" one
that would be an average person and then modify that for each
sprite. It's a good idea if you have to make a lot of characters
(especially townspeople)...But make sure that you modify the
dummy enough to make each one look individual and not just
color swapped like they did with Mortal Kombat, heh...So the
basic head, two pixels in between the eyes, the eyes are two
pixels tall, there's a single pixel space between them and the
sides of the head, as well as between them and the bottom of the
jaw. All in all it looks reasonably proportioned. Note that it doesn't
take up the entire space it's allowed...A lot of the room is left for
the hair because hair is important, heh...When you have a 16x16
sprite, and you have only 6 pixels for a body, you don't have a lot

that differentiates one sprite from another, except for colors and a
few pixels. To make the characters stand out from eachother
more, everyone usually has an extremely distinct hairstyle. Hair is
very versatile and can be short, long, parted on a side, parted in
the middle, tied in a ponytail, tied in pigtails, wrapped into a bun,
shaved, spiked, and so on...It's a good way of separating one
character from another, so it gets a lot of space on the sprite. If
you were to fill in all of your characters with black so they were
shadows, the only real way of telling them apart would be the
shape of their hair. Anyway, moving on, notice that the jaw comes
down to the bottom of the top orange guide.

Now we add the torso...I've set it up so that one fist is forwards
and one is back. In older games, sprites would constantly switch
from the left foot forwards frame to the right foot forwards
one...This was a way of avoiding making a third "standing" frame
where both feet are in the middle and the hands are at the
sides...There are things I want to talk about in this stance, so I'm
going with a frame that's already in the middle of walking. Note I
didn't separate the arm from the torso...You can if you want (and
it'll make it look like a jacket sort of deal), but I'm not going to for
this one...This guy will just be a generic shirt and pants character.
The yellow guideline defines the distance from the bottom of the
jaw to the waist, and really you only get 2 pixels for the chest
because of the waistline (unless it's, say, a dress or a shirt that's
untucked or something and you don't need that line)...I mention
this because if you check out his shoulders, you can see they go
up into the orange. The reason for this is that the world you're
looking at in the game is not a straight on front view, and it's not a
straight on above view, it's a "top down" view ("top down" is
usually used to describe the angle of Final Fantasy style games).
Basically you're looking down at them at around 45 degrees,

which is why you can see the front and tops of houses and such
(45 degrees is usually used to describe isometric games (like
Diablo, where the tiles run diagnol instead of straight up and
down) because a lot of people don't understand what "isometric"
is (you'll come across it all the time in a drafting class, heh), so
that's why "top down" is used instead of "45 degree" for FF style
stuff...confused? Heheh...). Now because it's a top down view,
you're going to see part of the top of the characters shoulders and
they're going be back more "under" his head...You have to be
thinking about this in 3d in your head to get it...The more above
you're looking down at something, the more of the shoulders you
see and the farther under the head they go. A lot of people make
the mistake of doing a flat front view of a character when the
maps are all top down...Honestly, it doesn't matter TOO
much...You can get away with it...But it stands out a lot more
these days. Back during the NES days, they warped perspective
so unbelievably that it's hilarious to look at now...But at the time it
didn't matter because the graphics were crummy in general and it
was the gameplay people wanted anyway. Check out a dungeon
map in the NES Zelda sometime...The room is viewed from
straight above, but Link is viewed from a top down type view, and
the statues and various junk is all viewed from a front view, heh...

Now we've got some legs on this guy. Again, note that they're in a
walking position, not a normal standing one...There are some
things I have to point out about this...I didn't draw a black line
along the bottom of the foot because I need that bottom row of
pixels to show a foot and your eye draws an imaginary line from
the left black pixel to the right black pixel on the leg anyway (if you
read the earlier chapter, you already know this...If not, go read it).
The character's right leg (the one that's forward) doesn't go
straight down, but it goes in a bit...The reason for this is in the

animation process. If you had the legs just go straight down when
they were forwards, and straight up when they were back, the
character would just look like he was stomping left and right as he
went along...By curving the leg in a bit, it gives them a more
natural look to their walk. The leg that's back is just a row of pixels
basically. Right now it looks like a stubby hip of some sort...We're
going to show that that leg is back when we get into the colors.
Also note that the waist is NOT a straight line, it curves, and the
legs go up into the yellow guide to connect to it...This is because
it's a top down view. A big mistake people do is have a straight
waist...It stiffens the character out a lot and gives a sort of
cardboard cut-out look, which looks really bad. Curving the line a
bit gives them a little more depth, like looking down at a cylinder
(think 3d again).

Now he's finally got hair. Hair is something you'll probably spend
the most time on...A single pixel can mess up the hair, or make it
look great, so you'll be juggling pixels constantly trying to get a
good shape. This guy will just have hair that goes to the side...I
threw in a missing pixel in the top of his hair to give him parted
hair, just for demonstration, heh...Note that his hair doesn't
completely cross his face with a black line...With a full black line, it
can start to separate the hair from the head too much (like how
the torso and legs look like separate segments), so sometimes
you want to just use color separation to split it up. I did use a bit of
black under the parts that flop down because I want to show that
they come out away from his head and aren't slicked down with
gel or anything. The general hairline is as from from the eyes as
the jaw is, there's a one pixel row dividing them. It's not mandatory
as different characters will have different hairstyles, but it's just a
guide to go with for starting. At first you'll probably want to be
working with color AND black at the same time on the hair to

figure out where you don't need black pixels dividing things,
because it's easier to tell...I've made a couple zillion sprites so I
just do the outline and figure it out in my head, heheh...This guy's
hair goes right up to the top of the sprite, but not every sprite has
to...Short people or kids wouldn't, nor would bald people because
the actual head only goes up a pixel or two under the hair. Of
course, if you had shorter people or kids, you'd probably mess
with all the proportions and give only 4 pixels for the body instead
of 6.

Here I've filled in the sprite with flat colors (no shading). Take note
of his hair, shirt, and shoes. I've used the reddish-brown of his hair
to define part of his head, and because there's no black under it, it
seems like it's more flat, closer to his head than his flopping down
hair on the other side. Also I left a blank pixel where the black line
separates for his part...If I had filled in that pixel with the hair color,
it would create the effect that he's got a strand of hair that sticks
up there...Filling it in with a black pixels makes his hair look flat
there, and leaving it blank gives the part. One pixel can make a lot
of difference. His shirt seems to be a muscle shirt (no
sleeves)...To turn it into a jacket I would have black pixels that
outline in, and to turn it into a t-shirt, I would put a white pixel on
his arm, joined to the rest of the white. That one white pixel will
create a "sleeve" on his arm. To give him long sleeves, I just need
to fill his arm in with white except for the last pixel. I'll demonstrate
a bunch of this stuff later.

Now we throw in the shading and we've got our finished sprite.
When you're shading your sprites, try to keep the light at a

consistant point...Right now the light it above and to the right of
the sprite, so all the shadows are on the left and bottom sides. A
reflex way of shading that a lot of people do is to shade the left
and right, leaving the middle brighter...This means the light
sources is right in front of them...It's okay to do, but it can make
the sprite look a bit dull because they have no "left and right", they
just have "center"...It's weird to explain, but it makes the sprite
more symmetrical and uninteresting...With shading on just one
side, it gives the sprite a definate left and right. Anyway, there's no
real "standard" for how dark the shade should be. You just have to
play with what looks good. There are some things you can keep in
mind though...If there are bright lights (say, middle of the day,
standing by a fire, etc.), the shadows will be very dark, high
contrast from from the normal color. If the lights are dim (inside a
house, night time, etc.), the contrast will be a lot less. I'm not
saying you need different light on your sprites depending on
where they are, just keep in mind what sort of effect your shading
can have. Another good thing to keep in mind is that if you squint
your eyes and look at your sprite and you can't tell the light
shading from the dark shading, then you can probably use some
more contrast. If you can't see a difference, then why bother
shading, right? This comes up a LOT when people use
yellow...They just slightly dim it and it's hard to even notice. The
face, being an important part of the character in showing
expressions and all usually has less contrast than the rest of the
sprite...This is simply because if you have a lot of contrast, it can
start to break up the colors and becomes distracting to the eye. If
you have just a big of contrast, you can see that it's shaded, but it
will fit together a bit...Granted, this contradicts my last point, but
like I say, there's no "law" in how to do this stuff...Go with what
looks good. Some games will even have the face completely one
color, so that the features (well, the eyes, heh) stand out well. I've
used pretty high contrast in the skin on this sprite, and it's a little
bit distracting. The last part to check out is his lower section. The
leg that's behind is completely dark and you can't see the foot.

The black outline below it helps set it further behind...That bottom
line could be just dark brown instead, but it would look more like
he's just raising his leg. The leg that's in front HAS to have more
light shading on it, so it looks like it's in front. His boot is separated
just with color. Also check out his arms...To have his forwards arm
look like it's coming forwards, there's only one pixel of shading on
it...The more shading, the further back it looks...To make his back
arm look more like it's behind him, I should have shaded the entire
arm with the dark shade. I left it a bit light though, and it looks like
it's more just at his side than it is behind him. There's more
shading on it than there is on his fist though, so it looks behind the
point where his fist is, which is good. I've said before that a single
pixel can make a big difference, and now we're going to look at
that:

So now you're probably thinking "What the...?" At first glance, all
of those sprites look the same...But they all have one pixel of
difference...Check out the forwards fist. I'll explain what this one
measly pixel can do...The basic fist in the first one is just a round
ball basically, no corner pixels. As a result it looks like a delicate
fist, like someone with small hands would have. You don't really
know much about it, it could be rotated in any direction and you
wouldn't know it changed. In the second one, there's a corner
pixel in the bottom left of the fist...Now the fist looks like it's
dipping down pointing towards his legs. He could even be wading
through water or climbing over a rock or something with this fist
because the point is down...In the third sprite, the corner pixel is at
the top left. Now it looks like he's pointing towards his face, but
with a finger because the bottom right pixel is still rounded which
means it can't be an elbow since an elbow is pointed. So basically
he's going "Who, me?" in a way. The fourth sprite has the pixel in
the top right and this makes it look sort of like he's motioning

"Come on and get me!" with his hand...He has no elbow and his
fingers are up by his head but out a bit. He's sort of doing an
uppercut out to the side...or flipping the player off, heh. The last
sprite has the pixel in the bottom right, and now it look like an
elbow because that's a natural position for the elbow to be in (in
the other ones, like the third one, you can't really mistake the pixel
for an elbow because that would be extremely weird having the
elbow up there, so your brain assumes it's a finger or hand)...Now
with the curve, the curve looks like a fist, opposite the pointed
elbow...So now he's doing an inward uppercut. Maybe starting out
a dragon punch or something, heheh. Now that's just ONE pixel:

Here I start messing with two pixels...In the first sprite, he's got the
flat side facing in. Two pixels make the fist look much flatter, like
maybe he's slapping or something...You know, so he's got a
definate flat edge (a very tight fist maybe). in the first sprite, he's
got it inside and it just looks pretty normal. But say he wants to
hold something like a vase up for everyone to see his strength. So
now he rotates his pixels to the top...Now his flat edge is on the
top and it looks like he's holding his hand up, and he could be
balancing a pot or a lamp or something on it. In the third one he's
got the flat parts out which looks...well...pretty bad. Heh...The only
way to justify this one would be if he had some sort of square
armor forearm piece and he's got his arm at the side, and you'd
have to show that by color usage when you were doing the
colors...For the last one, with the flat side on the bottom, he could
be playing basketball or something with that arm, or squishing
someone. Now this is all interesting and everything, but it's only
TWO pixels, heh...Let's try out three:

Now three pixels does something different from two pixels. Three
pixels starts to add "weight" to the fist...Where one pixel is a
delicate fist, three pixels starts turning into a hamfist, like an ogre
or big tough blacksmith would have. In these sprites, they follow
the same look as the one pixel ones do, but now they look like big
meaty hands, ready to crush something. The last sprite, with all
four corners filled in makes it look like a straight on view of the fist,
as if he's punching at you. Now we'll just take a quick glance at
the other arm:

Now we're looking at the back arm, and checking out the pixels on
it. In the first sprite, it has no corner pixels and it looks like maybe
a tentacle or something...A loose hand, I guess. No real
definition...It acts pretty much like a tail, just flailing there. In the
second one, his fist in in towards his body, like he's flexing his
muscles making a half circle with his arm. In the third one, the
pixel is on the outside and it makes it look more like his hand is
way out to the side, unlike the one before it where his hand feels
closer to his body. The second sprite is like he's a tough guy
walking around, and the third sprite is more like he's running
around with his arms swinging in a running pose. In the last one
he's got a flat line for the bottom of the fist and it looks like he's
playing basketball again, or he's got a gun for an arm, some sort
of armor, a large hamfist, etc. Now to just look at the two semi-
extremes for a second:

The guy on the left seems light and agile with his arms, not a lot of
definition in the fists...The guy on the right is more buff looking

because he's got huge square fists going. Now you should
understand what I mean when I say that one pixel can make so
much difference...That's what's interesting (to me) about working
with small sprites like this. Juggling pixels around to figure out
how to change someone's expression or movement with just a
pixel or two. A few pixels can make someone look huge like an
ogre, or dainty like a fairy. Those few pixels of difference make
your sprites look different and give them more life. This is why you
can start with a dummy, but you have to make sure that you alter
pixels on it to change the feeling of the body. I just used the fists
as an example for pixels, but you can change a lot with single
pixels, especially facial expressions. Work them them, play
around and figure out what looks best for your sprite's pose.
Practise, heh...Practise a lot, and soon it'll become natural.

Chapter 8

 Advanced modding
 8.1)actors templates

AHumans are a subclass of units derived from the Actor class. Their
name is an amalgam of Actor and Human.
AHumans are bipedal, with two arms for device manipulation. They are
also commonly equipped with a Jetpack, granting them higher mobility
than those not equipped with such equipment. The choice of adding a
jetpack or even limbs is completely optional, and depends on the mod's
requirements and needs. However, a head is necessary for the actor to
live.
AHumans are capable of equipping, dropping, picking up, and storing
devices in their inventory, unless their foreground arm is missing.
Lacking a background arm may affect the accuracy of HDFirearms used,
and will disable them from using multiple devices simultaneously, such
as a shield and one-handed weapon, or dual wielding. Missing one leg
will affect walking ability, generally surprisingly little. Missing both legs
disables their walking ability entirely.
They can board transport craft.

AddActor = AHuman
 PresetName = Dummy
 Description = Standard dummy soldier. Quite resilient to impacts and
falls, and very agile.
 AddToGroup = Actors
 Mass = 32
 GoldValue = 80
 HitsMOs = 1
 GetsHitByMOs = 1
 SpriteFile = ContentFile
 FilePath = Dummy.rte/Actors/Dummy/TorsoA.bmp
 FrameCount = 1
 SpriteOffset = Vector

 X = -4
 Y = -16
 AngularVel = 0
 EntryWound = AEmitter
 CopyOf = Wound Bone Entry
 ExitWound = AEmitter
 CopyOf = Wound Bone Exit
 AtomGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Civilian Stuff
 Resolution = 4
 Depth = 0
 DeepGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Civilian Stuff
 Resolution = 6
 Depth = 3
 DeepCheck = 0
 BodyHitSound = Sound
 CopyOf = Bone Crack
 PainSound = Sound
 CopyOf = Bone Crack
 DeathSound = Sound
 CopyOf = Bone Crack
 DeviceSwitchSound = Sound
 CopyOf = Device Switch
 Status = 0
 Health = 100
 ImpulseDamageThreshold = 2600
 AimAngle = 0
 AimDistance = 30
 Perceptiveness = 0.7
 CharHeight = 100
 HolsterOffset = Vector
 X = -6
 Y = -8
 Head = Attachable
 CopyOf = Dummy Head A
 ParentOffset = Vector
 X = -1
 Y = -13
 Jetpack = AEmitter
 CopyOf = Jetpack
 ParentOffset = Vector
 X = -6
 Y = -1

 JumpTime = 4 // Secs
 FGArm = Arm
 CopyOf = Dummy Arm FG A
 ParentOffset = Vector
 X = 0
 Y = -8
 BGArm = Arm
 CopyOf = Dummy Arm BG A
 ParentOffset = Vector
 X = 4
 Y = -9
 FGLeg = Leg
 CopyOf = Dummy Leg FG A
 ParentOffset = Vector
 X = 0
 Y = 1
 BGLeg = Leg
 CopyOf = Dummy Leg BG A
 ParentOffset = Vector
 X = 2
 Y = 1
 HandGroup = AtomGroup
 CopyOf = HandGroup
 FGFootGroup = AtomGroup
 CopyOf = Foot
 BGFootGroup = AtomGroup
 CopyOf = Foot
 StrideSound = Sound
 CopyOf = Robot Stride
 StandLimbPath = LimbPath
 PresetName = Dummy Stand Path
 StartOffset = Vector
 X = 1
 Y = 17
 StartSegCount = 0
 SlowTravelSpeed = 0.1
 NormalTravelSpeed = 0.5
 FastTravelSpeed = 1.5
 PushForce = 1800
 StandLimbPathBG = LimbPath
 CopyOf = Dummy Stand Path
 StartOffset = Vector
 X = 4
 Y = 17
 WalkLimbPath = LimbPath
 PresetName = Dummy Walk Path
 StartOffset = Vector
 X = 10

 Y = -2
 StartSegCount = 3
 AddSegment = Vector
 X = 0
 Y = 2
 AddSegment = Vector
 X = 0
 Y = 2
 AddSegment = Vector
 X = 0
 Y = 5
 AddSegment = Vector
 X = 0
 Y = 5
 AddSegment = Vector
 X = -6
 Y = 4
 AddSegment = Vector
 X = -4
 Y = 0
 AddSegment = Vector
 X = -4
 Y = 0
 AddSegment = Vector
 X = -4
 Y = 1
 AddSegment = Vector
 X = -3
 Y = 1
 AddSegment = Vector
 X = 0
 Y = -2
 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 2.6
 FastTravelSpeed = 4.5
 PushForce = 8000
 CrouchLimbPath = LimbPath
 PresetName = Dummy Crouch Path
 StartOffset = Vector
 X = 10
 Y = 0
 StartSegCount = 0
 SlowTravelSpeed = 0.1
 NormalTravelSpeed = 0.5
 FastTravelSpeed = 1.5
 PushForce = 5000
 CrawlLimbPath = LimbPath
 PresetName = Dummy Crawl Path

 StartOffset = Vector
 X = -12
 Y = -8
 StartSegCount = 2
 AddSegment = Vector
 X = 12
 Y = 0
 AddSegment = Vector
 X = 8
 Y = 2
 AddSegment = Vector
 X = 0
 Y = 8
 AddSegment = Vector
 X = 0
 Y = 10
 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 1.8
 FastTravelSpeed = 4.5
 PushForce = 8000
 ArmCrawlLimbPath = LimbPath
 PresetName = Dummy Arm Crawl Path
 StartOffset = Vector
 X = -8
 Y = -5
 StartSegCount = 2
 AddSegment = Vector
 X = 0
 Y = -4
 AddSegment = Vector
 X = 3
 Y = -3
 AddSegment = Vector
 X = 4
 Y = 0
 AddSegment = Vector
 X = 4
 Y = 4
 AddSegment = Vector
 X = 0
 Y = 10
 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 1.5
 FastTravelSpeed = 4.5
 PushForce = 6000
 ClimbLimbPath = LimbPath
 PresetName = Dummy Climb Path
 StartOffset = Vector

 X = -8
 Y = -10
 StartSegCount = 6
 AddSegment = Vector
 X = 0
 Y = -4
 AddSegment = Vector
 X = 3
 Y = -3
 AddSegment = Vector
 X = 4
 Y = 0
 AddSegment = Vector
 X = 4
 Y = 4
 AddSegment = Vector
 X = 6
 Y = 8
 AddSegment = Vector
 X = 0
 Y = 14
 AddSegment = Vector
 X = -5
 Y = 5
 AddSegment = Vector
 X = -3
 Y = 0
 SlowTravelSpeed = 1.0
 NormalTravelSpeed = 1.5
 FastTravelSpeed = 4.5
 PushForce = 5000
 JumpLimbPath = LimbPath
 PresetName = Dummy Jump Path
 StartOffset = Vector
 X = 0
 Y = 8
 StartSegCount = 3
 AddSegment = Vector
 X = 0
 Y = -10
 AddSegment = Vector
 X = 0
 Y = 4
 AddSegment = Vector
 X = 0
 Y = 4
 AddSegment = Vector
 X = -8

 Y = 14
 SlowTravelSpeed = 3
 NormalTravelSpeed = 6
 FastTravelSpeed = 7
 PushForce = 5000
 DislodgeLimbPath = LimbPath
 PresetName = Dummy Dislodge Path
 StartOffset = Vector
 X = 2
 Y = -10
 StartSegCount = 0
 AddSegment = Vector
 X = 0
 Y = 6
 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 2.5
 FastTravelSpeed = 4.5
 PushForce = 10000
 AddGib = Gib
 GibParticle = MOSRotating
 CopyOf = Dummy Rib Cage Gib A
 Offset = Vector
 X = -2
 Y = -3
 Count = 1
 Spread = 0
 MinVelocity = 0
 MaxVelocity = 0

ACrabs are quadrupedal actors derived from the Actor class. Their name
is an amalgam of Actor and Crab, although real crabs typically have
more than four legs. The term crab is used because this actor type was
originally made for crabs, which are depicted in CC as quadrupedal,
likely for the sake of simplicity.
An ACrab has the benefit of added ground mobility, having four legs and
no upright constraints, but they are not typically equipped with jumping
or jetpack abilities. ACrabs are capable of having a jetpack, but it is
uncommon. Their lack of upright constraints affects their jetpack use.
Their angle of fire can be limited, making upper and lower bounds to the
angle they can aim (like real-world tanks). However, the bounds are not
in relation to the rotation of the actor.
Instead of arms like AHumans have for operating devices, ACrabs have
a turret with a mounted device. This limits them to that single
predetermined device. They can not switch devices, pick up devices, or
drop devices. Their one and only device can be and generally is
destructible. While they can hold devices in their inventory, they cannot
access them, they will only serve to weigh them down, and they will
only be retrievable upon the ACrab gibbing. ACrabs oddly do not suffer
from recoil forces, this was likely an oversight in the creation of their
means of handling a device.

AddActor = ACrab
 PresetName = Dreadnought
 Description = Armored tank on 4 legs. Armed with a machine gun and
covered with multiple layers of armor.
 AddToGroup = Actors
 Mass = 21.71
 GoldValue = 200
 HitsMOs = 1
 GetsHitByMOs = 1
 SpriteFile = ContentFile
 FilePath = Dummy.rte/Actors/Dreadnought/MountMobileA.bmp
 FrameCount = 2
 SpriteOffset = Vector
 X = -6
 Y = -6
 EntryWound = AEmitter
 CopyOf = Leaking Machinery Light

 ExitWound = AEmitter
 CopyOf = Leaking Machinery Light
 AtomGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Military Stuff
 Resolution = 4
 Depth = 0
 DeepCheck = 0
 BodyHitSound = Sound
 CopyOf = Bone Crack
 PainSound = Sound
 CopyOf = Bone Crack
 DeathSound = Sound
 CopyOf = Bone Crack
 DeviceSwitchSound = Sound
 CopyOf = Device Switch
 Status = 0
 Health = 100
 ImpulseDamageThreshold = 2100
 AimAngle = 0
 AimRange = 0.5
 AimDistance = 30
 CharHeight = 110
 Turret = Turret
 CopyOf = Dummy Turret Large
 ParentOffset = Vector
 X = 0
 Y = -5
 LFGLeg = Leg
 CopyOf = Dummy Crab Leg FG
// CopyOf = Dummy Leg FG A
 ParentOffset = Vector
 X = -5
 Y = 1
 LBGLeg = Leg
 CopyOf = Dummy Crab Leg BG
// CopyOf = Dummy Leg BG A
 ParentOffset = Vector
 X = -5
 Y = 1
 RFGLeg = Leg
 CopyOf = Dummy Crab Leg FG
// CopyOf = Dummy Leg FG A
 ParentOffset = Vector
 X = 5
 Y = 1
 RBGLeg = Leg

 CopyOf = Dummy Crab Leg BG
// CopyOf = Dummy Leg BG A
 ParentOffset = Vector
 X = 5
 Y = 1
 LFootGroup = AtomGroup
 CopyOf = CrabFootGroup
 RFootGroup = AtomGroup
 CopyOf = CrabFootGroup
 StrideSound = Sound
 CopyOf = Robot Stride
 LStandLimbPath = LimbPath
 PresetName = Dummy Crab Stand Path Left
 StartOffset = Vector
 X = -6
 Y = 6
 StartSegCount = 0
 SlowTravelSpeed = 0.1
 NormalTravelSpeed = 0.5
 FastTravelSpeed = 1.5
 PushForce = 1800
 LWalkLimbPath = LimbPath
 PresetName = Dummy Crab Walk Path Left
 StartOffset = Vector
 X = -13
 Y = -12
 StartSegCount = 4
 AddSegment = Vector
 X = 10
 Y = 0
 AddSegment = Vector
 X = 5
 Y = 8
 AddSegment = Vector
 X = 0
 Y = 3
 AddSegment = Vector
 X = 0
 Y = 3
 AddSegment = Vector
 X = 0
 Y = 3
 AddSegment = Vector
 X = -2
 Y = 2
 AddSegment = Vector
 X = -13
 Y = 0

 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 2.5
 FastTravelSpeed = 4.5
 PushForce = 5500
 LDislodgeLimbPath = LimbPath
 PresetName = Dummy Crab Dislodge Path Left
 StartOffset = Vector
 X = -1
 Y = -10
 StartSegCount = 0
 AddSegment = Vector
 X = 0
 Y = 6
 SlowTravelSpeed = 1.5
 NormalTravelSpeed = 2.5
 FastTravelSpeed = 4.5
 PushForce = 10000
 RStandLimbPath = LimbPath
 CopyOf = Dummy Crab Stand Path Left
 PresetName = Dummy Crab Stand Path Right
 StartOffset = Vector
 X = 6
 Y = 6
 RWalkLimbPath = LimbPath
 CopyOf = Dummy Crab Walk Path Left
 PresetName = Dummy Crab Walk Path Right
 StartOffset = Vector
 X = -2
 Y = -12
 RDislodgeLimbPath = LimbPath
 CopyOf = Dummy Crab Dislodge Path Left
 PresetName = Dummy Crab Dislodge Path Right
 StartOffset = Vector
 X = 2
 Y = -10
 AddGib = Gib
 GibParticle = MOSRotating
 CopyOf = Gib Metal Grey Small B
 Offset = Vector
 X = 0
 Y = -1

ACDropShips are a subclass of actors that are ships that deploy cargo by
dropping it. Their name is an amalgam of Actor, Craft, and Drop Ship.
ACDropships have 2 engines that are used for primary thrust and
stabilization. The two stabilize by emitting more or less based on the tilt
of the craft. When Up is pressed, both engines thrust more. When Down
is pressed, both engines thrust less. With Right is pressed, both engines
tilt clockwise and increase power, not affecting lift significantly, but
adding rightward thrust. Left is the opposite of right. When one engine is
destroyed, stabilization is almost always lost, resulting in a spinning
plummet as the remaining engine still thrusts, ending in an gibbing,
either due to impact or auto-scuttling.
To support in stabilization, ACDropShips also have retro thrusters,
which actually defy the lift force, but greatly help in keeping the ship
stable. While a dropship can be made without retro thrusters, it will
likely roll over and lose balance when attempting much horizontal
movement. Their help in stabilization can even make a single engine
dropship possible, if used right.
Being a type of craft, ACDropShips can hold actors and devices in their
inventory, and can eject them and board them through exits. The exit
opening for dropships is visually represented by two attachable doors
rotating apart to open. These doors can be used as armor for the bottom
of the craft, and their loss only has no functional detriment. The exits,
when open and not still dropping, have 'tractor beams' of variable length,
width, and power, that can pull actors and devices in to the exit. They are
visually represented by dotted yellow lines, with dots moving inward.
Dots moving outward is a sign that cargo is still being dropped. Crafts
can be flown above the top of the level to be returned to Trade Star
Midas, selling the for the value of them and their contents, which is
affected by health. Crafts also generally gib into a lethal mess of falling
debris, killing occupants and actors below. Crafts also have a scuttling
ability, accessibly through the pie menu, which self destructs them.
When a craft senses that it is as good as dead, it automatically scuttles.
This sense is currently flawed.

AddActor = ACDropShip
 PresetName = Drop Ship
 Description = Heavily armored aerial transport. Very reliable and
stable.
 AddToGroup = Craft
 Mass = 1300
 HitsMOs = 1
 GetsHitByMOs = 1
 SpriteFile = ContentFile
 FilePath = Dummy.rte/Crafts/Dummy Dropship/DropshipHullA.bmp
 FrameCount = 1
 SpriteOffset = Vector
 X = -67
 Y = -26
 EntryWound = AEmitter
 CopyOf = Dent Metal
 ExitWound = AEmitter
 CopyOf = Dent Metal
 GoldValue = 110
 AtomGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Military Stuff
 Resolution = 10
 Depth = 0
 DeepGroup = AtomGroup
 AutoGenerate = 1
 Material = Material
 CopyOf = Military Stuff
 Resolution = 20
 Depth = 4
 DeepCheck = 1
 BodyHitSound = Sound
 CopyOf = Metal Body Blunt Hit
 Status = 2
 Health = 100
 ImpulseDamageThreshold = 9000
 StableVelocityThreshold = Vector
 X = 220
 Y = 220
 CharHeight = 100
 LThruster = AEmitter
 CopyOf = Dummy Dropship Engine A
 ParentOffset = Vector
 X = -53
 Y = -12
 Mass = 100
 RThruster = AEmitter

 CopyOf = Dummy Dropship Engine B
 ParentOffset = Vector
 X = 53
 Y = -12
 Mass = 100
 ULThruster = AEmitter
 CopyOf = Dummy Dropship Retro Thruster
 ParentOffset = Vector
 X = -23
 Y = -22
 URThruster = AEmitter
 CopyOf = Dummy Dropship Retro Thruster
 ParentOffset = Vector
 X = 23
 Y = -22
 LHatchDoor = Attachable
 CopyOf = Dummy Dropship Door A
 ParentOffset = Vector
 X = 0
 Y = -12
 RHatchDoor = Attachable
 CopyOf = Dummy Dropship Door B
 ParentOffset = Vector
 X = 0
 Y = -12
 HatchDoorSwingRange = Matrix
 AngleDegrees = 28
 HatchDelay = 250
 HatchOpenSound = Sound
 AddSample = ContentFile
 Path = Base.rte/Actors/Rockets/HatchOpen.wav
 AddExit = Exit
 Offset = Vector
 X = 0
 Y = 28
 Velocity = Vector
 X = 0
 Y = 4
 Radius = 22
 Range = 40
// ExitInterval = 1250;
 CrashSound = Sound
 CopyOf = Metal Body Blunt Hit Large
 CanLand = 0
 GibImpulseLimit = 18000
 GibWoundLimit = 26
 GibSound = Sound
 CopyOf = Ship Explosion

 AddGib = Gib
 GibParticle = AEmitter
 CopyOf = Fuel Fire Trace Gray
 PresetName = Ship Explosion
 LifeTime = 175
 Count = 8
 Spread = 2.25
 MaxVelocity = 20
 MinVelocity = 5
 LifeVariation = 0.25

8.2)how to make correct walkpaths

Things you'll need:

Calculator - Optional
MSPaint - or any other program that shows offsets
NotePad - Obviously
Registered version of CC - You'll need the actor veiwer

Lets take a look at the walkpath code:

Code:
StartOffset = Vector

Defines the 0,0 point for future offsets, its start offset is the actor's hip
joint.

Code:
StartSegCount = N

Causes the game to skip the first N AddSegment lines when not needed,

(N being any number larger than zero) so actors can climb steep hills
without having to raise their foot all the time. (Only when climbing)

Code:
AddSegment = Vector

Adds a segment in the walk "animation", will be explained in the next
sections.

Code:
SlowTravelSpeed =
NormalTravelSpeed =
FastTravelSpeed =

Not sure what slow and fast do, but NormalTravelSpeed is the speed the
actor moves his legs. (The others can be ignored, they're a feature Data
wanted to add to CC)

Code:
PushForce =

Don't know...

How do we start:

Start by copying the coalition light's torso code into a new a .ini, scroll
down to the walkpath area and delete all the AddSegment lines. Do not
erase the StartSegCount and StartOffset lines!
Change StartSegCount to 0. (We won't be using this for this tutorial, I
might add a section about this var in the future)

Open the actor veiwer and start working, reload actor data whenever you
make a change:

Now we begin by adding one add segment like so:

Code:
 AddSegment = Vector
 X = 0
 Y = 5 //You don't normally have to use
five, I will in this tut

This is the first part of the walking animation, our actor will his foot by 5
pixels.

Now, press the move right key and have him raise his foot and take a pic:

Now we want out actor to move his foot backwards and take it forward
again so we draw a dotted "line" following the path like so:

(The first dot should be in the center of the foot)

Now here comes the part where I think most people fail:
Look at the offset of the 1st dot: 50,50
And now the 2nd: 48,55
So the X drops by 2 and the Y gets added 5 so your next segment should
look like this:
Code:
 AddSegment = Vector
 X = -2
 Y = 5

Now for the next segment:
2nd offset: 48,55
3rd offset: 44,56
So now:
Code:

 AddSegment = Vector
 X = -4
 Y = 1

And the one after that:
3rd offset: 44,56
4th offset: 37,57
So:
Code:
 AddSegment = Vector
 X = -7
 Y = 1

And finally:
4th offset: 37,57
5th offset: 28,58
Code:
 AddSegment = Vector
 X = -9
 Y = 1

And you're done, that was as hard you thought it was right? Play around
with these variables and make your own awesome walkpaths!

If you find any spelling/math errors/know what other vars do, please tell
me.
Sorry if my bad grammar is confusing and hope I was able to help.

(Note: The walkpath in this tut is very basic and probably looks bad,
don't expect to much)

Chapter 1

 Lua modding

DATATYPES
Number

A Number in Lua is any variable of type Interger, Float, or Fixed.
Vector

A Vector in Cortex Command is an array with values x, y specifying a
position.
String

A String is any number of typed charicters, enclosed in " "
Boolean

Boolean has two values, True, or False.
Table

Lua has a general-purpose aggregate datatype called a table. Aggregate
data types are used for storing collections (such as lists, sets, arrays, and
associative arrays) containing other objects (including numbers, strings,
or even other aggregates). Lua is a unique language in that tables are
used for representing most all other aggregate types. <ref>http://lua-
users.org/wiki/LuaTypesTutorial</ref>
Function

In Lua, functions are assigned to variables, just like numbers and strings.
Functions are created using the function keyword. Here we create a
simple function which will print a friendly message.
nil

nil is a special value which indicates no value. If a variable has the value
nil then it has no value assigned to it and therefore will no longer exist
(or doesn't exist yet). By setting a variable to nil you can delete a
variable.

http://lua-users.org/wiki/LuaTypesTutorial�
http://lua-users.org/wiki/LuaTypesTutorial�

Userdata

Userdata values are objects foreign to Lua, such as objects implemented
in C. These typically come about when an object in a C library is
exposed to Lua. An example of a userdata in Cortex Command value is
an Activity.

BASIC SYNTAX
Variables

A variable stores a value. The value can be any of a few datatypes. Here
are examples to assign variables x, y, and z number, boolean, and string
values respectively:

1. x = 21 --Integer
2. x = true --Boolean
3. x = "Cortex" --String

Comments

In programming, comments are parts of code that are completely ignored
by the reading program. In Lua, this is accomplished with the use of two
hyphens right next to each other: "--"

1. --This is a proper comment.
2. function() --Comments can also be placed
after a statement.

3.
4. --[[Or this format can be used
5. to make a block comment.
6. That spans multiple lines.
7.]]--

http://www.datarealms.com/wiki/index.php/Activity�
http://www.datarealms.com/wiki/index.php/Lua_Datatypes�

Variable Manipulation

Variables of any datatype can be manipulated in a variety of ways. We
will explain the methods of computing, comparing, and assigning
variable values.
Math
The math operators are common math signs:

Math Operators

Symbol Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

Assignment & Math
These operators are shorthand; they first add the inputs, and then assign
the result to the first.

Math Operators

Symbol Purpose

+= Addition

-= Subtraction

*= Multiplication

/= Division

Example:

1. x = 1 --x is 1
2. x = x + 1 --x is 2
3. x += 1 --shorthand form; x is 3

Equality
These operators are usually used with control structures and return
a boolean value.

Comparison Operators

Symbol Purpose

== is equal to

~= is not equal to

>= is greater or equal

http://www.datarealms.com/wiki/index.php/Boolean�

<= is less or equal

> is less than

< is less than

Example:

1. x = 5 --assignment
2. x == 5 --true
3. x ~= 5 --false

Control Structures

If/then
One of the simplest logical constructions, the first statement is evaluated
as a boolean. Equality operators are useful to this effect. If the first
statement is true the statement after then is executed.
Example:

1. x = 1
2. if x == 1 then y = 1 end

or

1. x = true
2. if x then y = true end

For
While
Functions

A Lua function is a set of instructions invoked as a group by name with
the syntax:

1. function_name(arguments)

In Lua, the trailing parenthesis are not necessary for control structures
such as if or for, but may be useful to maintain logical flow while
reading code. If in doubt, parenthesize. Another important facet of
functions is their return value. A function can be used in the stead of a
datatype as long as its return value is of that datatype.
Member Functions

You may have wondered at the term "member function," but this is
simply a function that is organized into a group of functions and
variables which in Cortex Command are the Manager objects. Proper
syntax for accessing member functions in Lua:

1. object_name:function_name(arguments)

	THE GUIDE
	Crab
	Mega Crab
	Jumper
	Browncoat Light
	Browncoat Heavy
	Brain Case
	Robot 1
	Robot 2
	Brain Robot
	Rocket Mk1
	Rocket Mk2
	Drop Ship Mk1
	Avalable Tools & Weapons
	light digger
	medium digger
	Heavy digger
	Concrete sprayer
	pusher
	Blaster
	Laser Rifle
	Riot shield
	Units
	Coalition Light Soldier
	Coalition Heavy Soldier
	Coalition Battle Drone
	Coalition Medic Drone
	Coalition Brain Robot
	WEAPONS AND DEVISES
	Coalition concrete sprayer
	Pulse digger
	pistol
	Auto pistol
	Auto shot pistol
	Compact assault rifle
	Assault rifle
	Gatling gun
	Sniper rifle
	Heavy sniper rifle
	shotgun
	Auto shotgun
	Mauler shotgun
	flamer
	Napalm flamer
	Spike launcher
	Flak cannon
	Auto cannon
	Revolver cannon
	Uber cannon
	Rocket launcher
	Homing missile launcher
	UNITS
	Dummy Controller
	Dummy
	Dummy Dreadnought
	Dummy Small Turret
	Dummy Drop Ship
	Dummy Rocket
	Weapons And Tools
	Turbo digger
	shielder
	Rail pistol
	nailgun
	Dummy blaster
	repeater
	Nailer cannon
	Dummy sniper rifle
	Dummy grenade launcher
	Destroyer cannon
	annihilator
	Disruptor grenade
	Impulse grenade
	Skeleton
	Zombie Thin
	Zombie Medium
	Zombie Fat
	Weapons
	blunderpop
	Blunder buss
	Blue bomb
	A collection of "rebels". They use antique weapons, and recruit civilians, prisoners, and the poor. Effectively, cannon fodder. Each type of soldier has unique characteristics which help it slightly with combat and effectiveness.
	Dafred
	Mia
	Dimitri
	Brutus
	Sandra
	Gordon
	Weapons and devises
	Foam sprayer
	shovel
	Lady pistol
	glock
	Hak 20
	luger
	Desert Eagle
	peacemaker
	Uzi
	Tommy gun
	Yak 47
	Yak 4700
	M 16
	M 1600
	Long rifle
	Ronin sniper rifle
	Pumpgun
	shotgun
	Spaz 12
	Spaz 1200
	bazooka
	RPG M17
	Pineapple grenade
	Stick grenade
	Molotov cocktail
	stone
	Distractor device
	Vocabulary
	Fundamentals
	Pillow Shading
	Comic Shading
	Natural Shading
	What is Pixel Art?
	Pixel Art - How is it generally made?
	What are some of the uses of Pixeling Art?
	DATATYPES
	Number
	Vector
	String
	Boolean
	Table
	Function
	nil
	Userdata
	BASIC SYNTAX
	Variables
	Comments
	Variable Manipulation
	Math
	Assignment & Math
	Equality

	Control Structures
	If/then
	For
	While

	Functions
	Member Functions

